

## **COLLEGE OF ENGINEERING**

## DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING B.ENG. CHEMICAL ENGINEERING PROGRAMME

## Process Dynamics and Control I (CHE 531) Assignment II

*Given Date: 08/10/2018 Submission Date: 14/10/2018* 

## PROBLEM STATEMENT

A single-tank process has been operating for a long period of time with the inlet flow rate equal to 30.4 ft<sup>3</sup>/min. After the operator increases the flow rate suddenly by 10%, the liquid level in the tank changes as given in Table 1. Assuming that the process dynamics can be described by a first-order model, calculate the steady-state gain and the time constant of the process with the aid of MATLAB *mfile*.

Table 1. Dynamics data of the process

| t (min) | h (ft) |
|---------|--------|
| 0       | 5.5    |
| 0.2     | 5.75   |
| 0.4     | 5.93   |
| 0.6     | 6.07   |
| 0.8     | 6.18   |
| 1       | 6.26   |
| 1.2     | 6.32   |
| 1.4     | 6.37   |
| 1.6     | 6.4    |
| 1.8     | 6.43   |
| 2       | 6.45   |
| 3       | 6.5    |
| 4       | 6.51   |
| 5       | 6.52   |