Introduction

The ability to organize and process information is the key to success in the modern age. Computers are designed to handle and process large amounts of information quickly and efficiently, but they can't do anything until someone tells them what to do.

C is designed as a bridge between the programmer and the raw computer. The idea is to let the programmer organize a program in a way that he can easily understand. The compiler then translates the language into something that the machine can use.

C is a programming language that allows a software engineer to efficiently communicate with a computer. C is a highly flexible and adaptable language. Since its creation in 1970, it's been used for a wide variety of programs including firmware for microcontrollers, operating systems, applications, and graphics programming.

C is one of the most widely used languages in the world and is fairly stable. C is a highly portable language oriented towards the architecture of today's computers. The actual language itself is relatively small and contains few hardware-specific elements. It includes no input/output statements or memory management techniques, for example. Functions to address these tasks are available in the extensive C standard library.
C's design has significant advantages:

· Source code is highly portable
· Machine code is efficient
· C compilers are available for all current systems

Fundamentals

A C program consists of individual building blocks called functions, which can invoke one another. Each function performs a certain task. Ready-made functions are available in the standard librarys; other functions are written by the programmer as necessary. A special function name is main(): this designates the first function invoked when a program starts. All other functions are subroutines.
#include <stdio.h>

void main(void)

{

printf(“Hello World”);

}

The statements that make up the functions, together with the necessary declarations and pre-processor directives, form the source code of a C program.
For small programs, the source code is written in a single source file. Larger C programs consist of several source files, which can be edited and compiled separately. Each such source file contains functions that belong to a logical unit, such as functions for output to a terminal, for example. Information that is needed in several source files, such as declarations, is placed in header files. These can then be included in each source file via the #include directive.
Source files have names ending in .c; header files have names ending in .h. A source file together with the header files included in it is called a translation unit.

There is no prescribed order in which functions must be defined.
Fig 1. Preparing a program for execution

[image: image1.emf]Source

file on

disk

List of

Errors

compiler attempts

to translate the

program

compiler attempts

to translate the

program

Source

file on

disk

Failure

Other

object

files

The linker links the

new object file with

other object files

Load File

The Loader places

the load file into

memory

Executable program

in memory

compiler attempts

to translate the

program

new

object file

Success

Creating a C program.
This course uses the Microsoft Visual Studio 6 as the tool to develop our C programs. The integrated development environment (IDE) contains all the applications needed to produce executable files and also reduces the complexity by allowing the compiling, linking and debugging to done in a single step. This IDE allows the programmer to develop applications for Windows, DOS or even allows the creations of DLLs. For this course we do not need to bring the complexity of designing applications for windows, our main objective is to learn the constructs and concepts of the C programming language.
All our applications will be designed for the ‘Windows 32 Console’ reducing the complexity associated with windows programming. The application will be executed on the DOS platform. These programs only use the C’s standard libraries.

Structure of a C program.

C programs are designed using functions, some of these functions are used from C’s standard libraries, but we can produce our own functions which will be discussed and used later in the course.

The structure of a C program is as follows.

#include <stdio.h>

#include <math.h>

void main(void)

{

int a;

float b;

printf(“hello world”);

a=9;

b=sqrt(a);

printf(“The square root of %d is %f”,a,b);

}

The first two lines are pre-processor directives. These tell the compiler to include the libraries encapsulated with the < >.

All our application that we create, will need to include the <stdio.h> library that includes the functions for basic input and output.
void main(void), every C program has one and only one main function. This is the point at which the code will begin execution. ‘{‘ indicates the start of the code for function main and ‘}’ indicates the end of the code. The code within the function main is quite simple:

int a - tells the compiler to allocate some memory for the storage of integer data.

float b - tells the compiler to allocate some memory for the storage of floating point numbers.
The printf(“Hello World”); is a function that belongs to the stdio.h library that is used to display information to the console window, in this case “Hello World”.
The variable ‘a’ is assigned the value 9, using a=9.
The sqrt function is used from math.h library to perform the square root of ‘a’, assigning the result to variable b.

the last printf function contains two placeholders %d and %f that will be replaced by the value of the variables ‘a’ and ‘b’ when the printf statement is executed. Often, you will want to embed the value within some other words as in the above example
Variables
As a programmer, you will frequently want your program to "remember" a value. For example, if your program requests a value from the user, or if it calculates a value, you will want to remember it somewhere so you can use it later. The way your program remembers things is by using variables. For example:
 int b;

This line says, "I want to create an area of memory called b that is able to hold one integer value."
A variable has a name (in this case, b) and a type (in this case, int, an integer). You can store a value in b by using the assignment operator:

 b = 5;

You can display the value in b by using the printf statement with the associated placeholder, in this case either %d or %i:

 printf("%d", b);

In C, there are several standard types for variables:
int - integer (whole number) values

float - floating point values; real numbers
double – double precision floating point numbers
char - single character values (such as "m" or "Z")

We will see and use examples of these other types as we go along.
scanf

 scanf("%d", &b);
All computer programs need data to work with. Data can be in numerous forms as indicated by the data type assigned to variables in their declaration. Values can be assigned to these variables during the programming stage or during run time by making use of a function called scanf(). scanf allows a user to enter data into a variable by means of the keyboard. The scanf function requires two parameters to be passed to it, the first is the placeholder/ data format, indicating the expected data and the second parameter is the address of the variable into which the data is to be stored. The address of operator & is used in front of the variable where the data is to be stored.

int b;

scanf(“%d”, &b);

when a program is executed with a scanf function, the program waits for the user to enter the data followed by a carriage return. The program will then continue to execute the remaining functions within the C program.

The scanf function uses the same placeholders as printf:

int uses %d

float uses %f

char uses %c

character strings (discussed later) use %s

example of using variables, printf and scanf.

#include <stdio.h>

void main(void)

{

 int a;

//declaration of variable to store first operand

 int b,c; //declaration of variables for second operand and the result

 printf("please enter your first value ");
//prompt user for first value

 scanf("%d",&a);
//store first value in variable a

 printf("\nplease enter your second value "); // prompt user for second value

 scanf("%d",&b);
// store second value in variable b

 c=a+b;
 //perform the addition of and assign value to c

 printf("\n the sum of %d and %d is %d\n", a, b, c); //output the result of the addition

}

Mathematical operators.

In C and virtually programming languages the following operators give the functionality of:
 Operator

Function

+

adds two numbers together

-

subtracts on number from the other

*

multiplies two numbers

/

divide performs the division of two numbers

%

gives the remainder of the division of integer values

Examples

int a, b;

int c, d, e, f, g;

float z;

a=10;

b=25;

x=10.1;

y=4.5;

c=a+b;

//c contains the value 35

d=b-a;

//d contains the value 15

e=b*a;

//e contains the value 250

f=b/a;

//f contains the value 2

g=b%a;
//g contains the value 5

z=b/a;

//z contains the value 2.5

When programming our application we must take into consideration that these mathematical operators have an order of precedence. i.e. some operators are executed before others. A definition that shows the order and ensures we code our applications appropriately is:

P
Parenthesis

E
Exponential

D
Division

M
Multiplication

A
Addition

S
Subtraction

Example

5*2+3=13

5*(2+3)=25

5+6*3-2+12/3= try this
Which is the correct answer

15,17,23,25,27,33

Exercises.

1. Design an application that calculates the area of a triangle, prompt the user to enter the dimensions and provide a suitable output. Be careful of the data types you use, try and envisage the expected results

2. Design an application that calculates the area of a circle, this time you will need to define PI. Use the pre-processor directive #define PI 3.142. again decide on the data types used by looking at the expected result

For the adventurous

3. Design an application that calculates the roots of a quadratic equation. Use the formula
[image: image2.wmf]a

ac

b

b

x

2

4

2

-

±

-

=

 remember that square root function belongs to the math.h library. Experiment with your solution, and try and work out why the application will report an error for some of the values entered. Remember, you will need to follow the order of precedence when performing mathematical calculations.
Work covered by notes.

Why C?

How the compiler produces the executable code

Structure of a C program

Using the ‘printf’ function
Using the ‘scanf’ function

Introduction to variables

Mathematical operators

_1221815233.vsd

_1222456725.unknown

