2. Numeric Variables and Constants

Computer programs usually work with different types of data and need a way to store the values being used. These values can be numbers or characters. C has two ways of storing number values — variables and constants — with many options for each. A variable is a data storage location that has a value which can change during program execution. In contrast, a constant has a fixed value that cannot change.

Today, you learn

· How to create variable names in C.

· The use of different types of numeric variables.

· The differences and similarities between character and numeric values.

· How to declare and initialize numeric variables.

· C's two types of numeric constants.

 2.1: Computer Memory

Optional Material
If you already know how a computer's memory operates, you can skip this section. If you're not sure, however, please continue. This information will help you better understand certain aspects of C programming.

RAM
A computer uses random-access memory (RAM) to store information while it is operating. RAM is located in integrated circuits, or chips, inside your computer. RAM is volatile, which means it's erased and replaced with new information as often as needed. Being volatile also means that RAM "remembers" only while the computer is turned on and loses its information when you turn off the computer.

Amount of RAM
Each computer has a certain amount of RAM installed. The amount of RAM in a system is usually specified in kilobytes (K), or megabytes (MB). One kilobyte of memory consists of 1,024 bytes. Thus, a system with 640K of memory actually has 640 times 1,024, or 655,360 bytes of RAM. One megabyte is 1,024 kilobytes.

Bytes
A byte is the fundamental unit of computer data storage. 0, "Odds and Ends," has more information about bytes.
	Table 2.1: Memory Space Required to Store Data

	Data
	Bytes Required

	The letter x
	1

	The number 100
	2

	The number 120.145
	4

	The phrase Teach Yourself C
	17

	One typewritten page
	3,000 (approximately)

Addresses
The RAM in your computer is organized sequentially, one byte following another. Each byte of memory has a unique address by which it is identified, an address that also distinguishes it from all other bytes in memory. Addresses are assigned to memory locations in order, starting at 0 and increasing to the system limit. For now, you needn't worry about addresses; it's all handled automatically for you by the C compiler.

Usage of RAM
What is your computer's RAM used for? It has several uses, but only one, data storage, need concern you as a programmer. Data means the information with which your C program works. Whether your program is maintaining an address list, monitoring the stock market, keeping a household budget, or tracking the price of hog bellies, the information (names, stock prices, expense amounts, or hog futures) is kept in your computer's RAM while the program is running.
Now that you understand a little about the nuts and bolts of memory storage, you can get back to C programming and how C uses memory to store information.

 2.2: Variables

Variables
A variable is a named data storage location in your computer's memory. By using a variable's name in your program, you are, in effect, referring to the data stored there.

 2.2.1: Variable Names

Rules for Naming Variables
To use variables in your C programs, you must know how to create variable names. In C, variable names must adhere to the following rules:

	
	The name can contain letters, digits, and the underscore character (_).

	
	The first character of the name must be a letter. The underscore is also a legal first character, but its use is not advised.

	
	Case matters (that is, upper- and lowercase letters). Thus, the names count and Count refer to two different variables.

	
	C keywords cannot be used as variable names. A keyword is a word that is part of the C language.

DO use variable names that are descriptive.
DO adopt and stick with a style for naming your variables.
DON'T start your variable names with an underscore unnecessarily.
DON'T name your variables with all capitals unnecessarily.

The following code contains some examples of legal and illegal C variable names:
percent /* legal */
y2x5__fg7h /* legal */
annual_profit /* legal */
_1990_tax /* legal but not advised */
savings#account /* illegal: contains illegal character # */
double /* illegal: is a C keyword */
9winter /* illegal: first character is a digit */

Using Lowercase in Names
Because C is case-sensitive, the three names percent, PERCENT, and Percent are considered to refer to three distinct variables. C programmers commonly use only lowercase letters in variable names although it's not required. Uppercase letters are usually reserved for the names of constants (which are covered later in this unit).

Choosing Descriptive Names
For many compilers, a C variable name can be up to 31 characters long. (It can actually be longer than that, but the compiler looks only at the first 31 characters of the name.) With this flexibility, you can create variable names that reflect the data being stored.
A program that calculates loan payments could store the value of the prime interest rate in a variable named interest_rate. The variable name helps make its usage clear. You could as well have created a variable named x or even johnny_carson; it doesn't matter to the C compiler. The use of the variable, however, would not be nearly as clear to someone else looking at the source code. Although it may take a little more time to type descriptive variable names, the improvements in program clarity make it worthwhile.

Naming Conventions
Many naming conventions are used for variable names created from multiple words.
The Underscore
You've been shown one style: interest_rate. Using an underscore to separate words in a variable name makes it easy to interpret.
Camel Notation
The second style is called camel notation. Instead of using spaces, the first letter of each word is capitalized. Instead of interest_rate, the variable would be named InterestRate. Camel notation is gaining popularity because it is easier to type a capital letter than an underscore.
This Course's Convention
We use the underscore in this course because it is easier for most people to read. You should decide which style you wish to adopt.

 2.2.2: Numeric Variable Types

The Need for Different Types of Variables
C provides several different types of numeric variables. Why do you need different types of variables? Different numeric values have varying memory storage requirements and differ in the ease with which certain mathematical operations can be performed on them.
By using the appropriate variable types (also called data types), you ensure that your program runs as efficiently as possible.

DO understand the number of bytes that variable types take for your computer.
DON'T use a float or double variable if you are only storing integers. Although they will work, using them is inefficient.
DON'T put negative numbers into variables with an unsigned type.

Small integer numbers (for example, 1, 199, –8) require less memory space for storage, and mathematical operations (addition, multiplication, and so on) with such numbers can be performed by your computer very quickly. In contrast, large integers and floating-point values (123,000,000 or 0.000000871256, for example) require more storage space and more time for mathematical operations.

Numeric Variable Categories
C's numeric variables fall into the following two main categories:

	
	Integer variables hold values that have no fractional part (that is, whole numbers only). Integer variables come in two flavors: signed integer variables can hold positive or negative values, whereas unsigned integer variables can hold only positive values (and 0, of course).

	
	Floating-point variables hold values that have a fractional part (that is, real numbers).

Within each of these categories are two or more specific variable types. These are summarized here, which also shows the amount of memory, in bytes, required to hold a single variable of each type when you use a microcomputer with 16-bit architecture.

	Table 2.2: C's Numeric Data Types
(on a 32-bit machine)

	Variable Type
	Keyword
	Bytes Required
	Range

	character
	char
	1
	–128 to 127

	integer
	int
	4
	–2,147,483,648 to 2,147,483,647

	short integer
	short
	2
	–32768 to 32767

	long integer
	long
	4
	–2,147,483,648 to 2,147,483,647

	unsigned character
	unsigned char
	1
	0 to 255

	unsigned integer
	unsigned int
	4
	0 to 4,294,967,295

	unsigned short integer
	unsigned short
	2
	0 to 65535

	unsigned long integer
	unsigned long
	4
	0 to 4,294,967,295

	single-precision
floating point
	float
	4
	1.2E–38 to 3.4E38
Approximate range; precision = 7 digits.

	double-precision
floating-point
	double
	8
	2.2E–308 to 1.8E308
Approximate range; precision = 19 digits.

Approximate Range
Approximate range means the highest and lowest values a given variable can hold. (Space limitations prohibit listing exact ranges for the values of these variables.)
Precision
Precision means the accuracy with which the variable is stored. (For example, if you evaluate 1/3, the answer is 0.33333 . . . with 3s going to infinity. A variable with a precision of 7 stores seven 3s.)

int Versus long
Looking at Table 2.2, you may notice that the variable types int and long are identical. Why then have two different types? The int and long variable types are indeed identical on 32-bit IBM PC-compatible systems, but they may be different on other types of hardware. On a 16-bit MS-DOS system, a long and an int are not the same size. Instead, a long is 4 bytes, whereas an int is 2. Remember that C is a flexible, portable language, so it provides different keywords for the two types.

Integer Variables: Signed by Default
No special keyword is needed to make an integer variable signed; integer variables are signed by default. You can, however, include the signed keyword if you wish. The keywords in Table 2.2 are used in variable declarations, discussed in the next section of this unit.
Listing 2.1 will help you determine the size of variables on your particular computer.

	Listing 2.1: SIZEOF.C

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
 27:
 28:
 29:
	/* LIST0301.c: Listing 2.1 */
/* SIZEOF.C: Program to tell the size of the C */
/* variable type in bytes */

#include <stdio.h>

void main(void) {
 printf("\nA char is %d bytes",
 sizeof(char));
 printf("\nAn int is %d bytes",
 sizeof(int));
 printf("\nA short is %d bytes",
 sizeof(short));
 printf("\nA long is %d bytes",
 sizeof(long));
 printf("\nAn unsigned char is %d bytes",
 sizeof(unsigned char));
 printf("\nAn unsigned int is %d bytes",
 sizeof(unsigned int));
 printf("\nAn unsigned short is %d bytes",
 sizeof(unsigned short));
 printf("\nAn unsigned long is %d bytes",
 sizeof(unsigned long));
 printf("\nA float is %d bytes",
 sizeof(float));
 printf("\nA double is %d bytes",
 sizeof(double));

}

	Output
	A char is 1 bytes
An int is 4 bytes
A short is 2 bytes
A long is 4 bytes
An unsigned char is 1 bytes
An unsigned int is 4 bytes
An unsigned short is 2 bytes
An unsigned long is 4 bytes
A float is 4 bytes
A double is 8 bytes

	Description
	The output of Listing 3.1 tells you exactly how many bytes each variable type on your computer takes. If you are using a 16-bit PC, your numbers should match those in Table 2.2.

Don't worry about trying to understand all the individual components of the program. Although some items are new, such as sizeof(), others should look familiar.

Lines 1 – 3 are comments about the name of the program and a brief description.
Line 5 includes the standard input/output header file to help print the information on the screen.
This is a simple program, in that it contains only a single function, main() (lines 7 – 29).

Lines 8 – 27 are the bulk of the program. Each of these lines prints a textual description with the size of each of the variable types, which is done using the sizeof operator. 9, "Exploring the Function Library," covers the sizeof operator in detail.

Line 28 of the program returns the value of 0 to the operating system before ending the program.

The Size of Variables
C does make some guarantees, thanks to the ANSI Standard. There are five things that can be counted on:

· The size of a char is 1 byte.

· The size of a short is less than or equal to the size of an int.

· The size of an int is less than or equal to the size of a long.

· The size of an unsigned int is equal to the size of an int.

· The size of a float is less than or equal to the size of a double.

 2.2.3: Variable Declarations

Variable Declarations
Before you can use a variable in a C program, it must be declared. A variable declaration informs the compiler of the name and type of a variable and optionally initializes the variable to a specific value. If your program attempts to use a variable that has not been declared, the compiler generates an error message.

Syntax
A variable declaration has the following form:
typename varname;
typename specifies the variable type and must be one of the keywords given in Table 2.2. varname is the variable name, which must follow the rules mentioned earlier. You can declare multiple variables of the same type on one line by separating the variable names with commas.
int count, number, start;
/* three integer variables */
float percent, total;
/* two float variables */

Location
On 2, "Variable Scope," you will learn that the location of variable declarations in the source code is important, because it affects the ways in which your program can use the variables. For now, you can place all the variable declarations together just before the start of the main() function.

2.2.4: Initializing Numeric Variables

Initialization Using Simple Assignment
When you declare a variable, you instruct the compiler to set aside storage space for the variable. However, the value stored in that space—the value of the variable—is not defined. It may be zero, or some random "garbage" value. Before using a variable, you should always initialize it to a known value. This can be done independently of the variable declaration by using an assignment statement.
/* Set aside storage space for count */
int count;
/* Store 0 in count */
count = 0;

DO initialize variables when you declare them whenever possible.
DON'T use a variable that has not been initialized. Results can be
unpredictable!
DON'T try to put numbers into variable types that are too small to hold them!

The Assignment Operator
Note that this statement uses the equal sign (=), which is C's assignment operator and is discussed further on , "Statements, Expressions, and Operators." For now, you need to be aware that the equal sign in programming is not the same as the equal sign in algebra. If you write x = 12 in an algebraic statement, you are stating a fact: "x equals 12." In C, however, it means something quite different: "Assign the value 12 to the variable named x."

Initialization within the Declaration
You also can initialize a variable when it is declared. To do so, follow the variable name in the declaration statement with an equal sign and the desired initial value.
int count = 0;
double percent = 0.01, taxrate = 28.5;
Out-of-Range Initializations
Be careful not to initialize a variable with a value outside the allowed range.
Examples
The C compiler does not catch such errors. Your program may compile and link, but you may get unexpected results when the program is run.

Here are some examples of out-of-range initializations:
int weight = 100000;
unsigned int value = -2500;

 2.3: Constants

Constants
Like a variable, a constant is a data storage location used by your program. Unlike a variable, the value stored in a constant cannot be changed during program execution. C has two types of constants, each with its own specific uses.

 2.3.1: Literal Constants

Literal Constants
A literal constant is a value that is typed directly into the source code wherever it is needed.
Examples
Floating-Point Constants: Decimal Notation
A literal constant written with a decimal point is a floating-point constant and is represented by the C compiler as a double-precision number. Floating-point constants can be written in standard decimal notation, as shown in these examples:
Examples

Here are two examples of literal constants being assigned to variables:
int count = 20;
float tax_rate = 0.28;
The 20 and the 0.28 are literal constants. The preceding statements store these values in the variables count and tax_rate. Note that one of these constants contains a decimal point whereas the other does not. The presence or absence of the decimal point distinguishes floating-point constants from integer constants.

123.456
0.019
100.
Note that the third constant, 100., is written with a decimal point even though it is an integer (that is, it has no fractional part). The decimal point causes the C compiler to treat the constant as a double-precision value. Without the decimal point, it is treated as an integer constant.

Floating-Point Constants: Scientific Notation
Floating-point constants also can be written in scientific notation. You may recall from high school math that scientific notation represents a number as a decimal part multiplied by 10 to a positive or negative power. Scientific notation is particularly useful for representing extremely large and extremely small values. In C, scientific notation is written as a decimal number followed immediately by an E or e and the exponent.

1.23E2 1.23 times 10 to the 2nd power, or 123
4.08e6 4.08 times 10 to the 6th power, or 4,080,000
0.85e–4 0.85 times 10 to the –4 power, or 0.000085

Integer Constants
A constant written without a decimal point is represented by the compiler as an integer number. Integer constants can be written in three different notations:

	
	A constant starting with any digit other than 0 is interpreted as a decimal integer (that is, the standard base-10 number system). Decimal constants can contain the digits 0 – 9 and a leading minus or plus sign. (Without a leading sign, a constant is assumed to be positive.)

	
	A constant starting with the digit 0 is interpreted as an octal integer (the base 8 number system). Octal constants can contain the digits 0 – 7 and a leading minus or plus sign.

	
	A constant starting with 0x or 0X is interpreted as a hexadecimal constant (the base-16 number system). Hexadecimal constants can contain the digits 0 – 9, the letters A – F, and a leading minus or plus sign.

 2.3.2: Symbolic Constants

Symbolic Constants
A symbolic constant, also called a named constant, is a constant that is represented by a name (symbol) in your program. Like a literal constant, a symbolic constant cannot change. Whenever you need the constant's value in your program, you use its name as you would use a variable name. The actual value of the symbolic constant needs to be entered only once, when it is first defined.
Advantages over Literal Constants
Symbolic constants have two significant advantages over literal constants: they are easier to read and easier to change. Let's see why.

Using a Literal Constant
Suppose that you are writing a program which performs a variety of geometrical calculations. The program frequently needs the value pi (2.14) for its calculations. (You may recall from geometry class that pi is the ratio of a circle's circumference to its diameter.) For example, to calculate the circumference and area of a circle with a known radius you could write
circumference = 3.14 * (2 * radius);
area = 3.14 * (radius)*(radius);
The asterisk (*) is C's multiplication operator. Thus, the first statement means "Multiply 2 times the value stored in the variable radius, and then multiply the result times 3.14. Finally, assign the result to the variable named circumference."

Using a Symbolic Constant Is Easier to Read
If, however, you define a symbolic constant with the name PI and the value 2.14, you could write
circumference = PI * (2 * radius);
area = PI * (radius)*(radius);
The resulting code is clearer. Rather than puzzling over what the value 2.14 is for, you can see immediately that the constant PI is being used.

Easier to Change
The second advantage of symbolic constants becomes apparent when you need to change a constant. Continuing the preceding example, you may decide that for greater accuracy your program needs to use a value of PI with more decimal places: 3.14159 rather than 3.14. If you had used literal constants for PI, you would have to go through your source code and change each occurrence of the value from 3.14 to 3.14159. With a symbolic constant, you would need to make a change only in the place where the constant is defined.

DO use constants to make your programs easier to read.
DON'T try to assign a value to a constant after it has already been initialized.

Defining a Symbolic Constant
C has two methods for defining a symbolic constant, the #define directive and the const keyword.

The Syntax of #define
The #define directive is one of C's preprocessor directives, discussed fully on 1, "Taking Advantage of Preprocessor Directives and More." The #define directive is used as follows:
#define CONSTNAME literal
This program line creates a constant named CONSTNAME with the value of literal. literal represents a numeric constant, as described earlier in this unit. CONSTNAME follows the same rules described for variable names earlier in this unit. By convention, the names of symbolic constants are uppercase. This makes them easy to distinguish from variable names, which by convention are lowercase. For the previous example, the required #define directive would be
#define PI 3.14159
Note that #define lines do not end with a semicolon (;).

The Placement of #define
#defines can be placed anywhere in your source code, but are in effect only for the portions of the source code that follow the #define directive. Most commonly, programmers group all #defines together, near the beginning of the file and before the start of main().
The Effect of #define
The precise action of the #define directive is to instruct the compiler, "In the source code, replace CONSTNAME with literal." The effect is exactly the same as if you had used your editor to go through the source code and make the changes manually. Note that #define does not replace instances of its target that occur as parts of longer names, within double quotes, or as part of a program comment.
#define PI 3.14
/* You have defined a constant for PI. */ not changed
#define PIPETTE 100 not changed

Description of const
The second way to define a symbolic constant is with the const keyword. const is a modifier that can be applied to any variable declaration. A variable declared to be const can't be modified during program execution—only initialized at the time of declaration.

Examples of const
Here are some examples:
const int count = 100;
const float pi = 3.14159;
const long debt = 12000000, float tax_rate = 0.21;
const affects all variables on the declaration line. In the last example, debt and tax_rate are symbolic constants. If your program tries to modify a const variable, the compiler generates an error message. For example,
const int count = 100;
count = 200; /* Does not compile! Cannot reassign or alter
 the value of a constant. */

* #define Versus const
What are the practical differences between symbolic constants created with the #define directive and those created with the const keyword? The differences have to do with pointers and variable scope. Pointers and variable scope are two very important aspects of C programming and are covered on Days 9 and 12, "Pointers" and "Variable Scope," respectively.
Example Program
Look now at a program that demonstrates variable declarations and the use of literal and symbolic constants. The code in Listing 2.2 prompts the user to input his or her weight and year of birth. It then calculates and displays a user's weight in grams and his or her age in the year 2000. You can enter, compile, and run this program using the procedures explained on , "Getting Started."

	Listing 2.2: The Use of Variables and Constants

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
 27:
 28:
 29:
 30:
 31:
 32:
 33:
 34:
 35:
 36:
	/* LIST0302.c: Listing 2.2 */
/* Demonstrates variables and constants. */

#include <stdio.h>
/* Define a constant to convert from pounds to */
/* grams. */
#define GRAMS_PER_POUND 454
/* Define a constant for the start of the next */
/* century. */
const int NEXT_CENTURY = 2000;
/* Declare the needed variables. */
long weight_in_grams, weight_in_pounds;
int year_of_birth, age_in_2000;

void main(void) {
 /* Input data from user. */

 printf("Enter your weight in pounds: ");
 scanf("%d", &weight_in_pounds);
 printf("Enter your year of birth: ");
 scanf("%d", &year_of_birth);

 /* Perform conversions. */

 weight_in_grams =
 weight_in_pounds * GRAMS_PER_POUND;
 age_in_2000 = NEXT_CENTURY - year_of_birth;

 /* Display results on the screen. */

 printf("\nYour weight in grams = %ld",
 weight_in_grams);
 printf("\nIn 2000 you will be %d years old",
 age_in_2000);

}

	Output
	Enter your weight in pounds: 175
Enter your year of birth: 1960

Your weight in grams = 79450
In 2000 you will be 40 years old

	Description
	The program declares the two types of symbolic constants in lines 7 and 10. In line 7, a constant is being used to make the value 454 more understandable. Because it uses GRAMS_PER_POUND, lines 25 – 26 are easy to understand.

Lines 12 and 13 declare the variables used in the program. Notice the use of descriptive names such as weight_in_grams. By reading its name, you see what this variable is used for.

Lines 18 and 20 print prompts on the screen. The printf() function is covered in greater detail later.

To allow the user to respond to the prompts, lines 19 and 21 use another library function scanf() that is covered later. scanf() gets information from the screen. For now, accept that this works as shown in the listing. Later, you will learn exactly how it works.

Lines 25 – 27 calculate the user's weight in grams and his or her age in the year 2000. Those statements and others are covered in detail tomorrow.

To finish the program, lines 31 – 34 display the results for the user.

 2.4: Q&A

Questions & Answers
Take a look at some questions that are frequently asked by programmers new to C.

Question 1
long int variables hold bigger numbers, so why not always use them instead of int variables?
Answer
A long int variable takes up more RAM than the smaller int. In smaller programs, this doesn't pose a problem. As programs get bigger, however, try to be efficient with the memory you use.

Question 2
What happens if I assign a number with a decimal to an integer?
Answer
You can assign a number with a decimal to an int variable. If you are using a constant variable, your compiler probably will give you a warning. The value assigned will have the decimal portion truncated. For example, if you assign 3.14 to an integer variable called pi, pi will only contain 3. The .14 will be chopped off and thrown away.

Question 3
What happens if I put a number into a type that is not big enough to hold it?
Answer
Answer Many compilers will allow this without signaling any errors. The number is wrapped to fit, however, and it isn't correct. For example, if you assign 2,147,483,648 to a four-byte signed integer, the integer really contains the value -2,147,483,648. If you assign the value 4,294,967,295 to this integer, it also really contains the value -1. Subtracting the maximum value the field will hold generally gives you the value that will be stored.

Question 4
What happens if I put a negative number into an unsigned variable?
Answer
As the previous answer indicated, your compiler may not signal any errors if you do this. The compiler does the same wrapping as if you assigned a number that was too big. For instance, if you assign –1 to an int variable that is two bytes long, the compiler will put the highest number possible in the variable (65535).

Question 5
What are the practical differences between symbolic constants created with the #define directive and those created with the const keyword?
Answer
The differences have to do with pointers and variable scope. Pointers and variable scope are two very important aspects of C programming and are covered on Days 9 and 12, "Pointers," and "Variable Scope," respectively. For now, know that by using #define to create constants, you can make your programs much easier to read.

	Table 2.2: C's Numeric Data Types
(on a 32-bit machine)

	Variable Type
	Keyword
	Bytes Required
	Range

	Character
	char
	1
	–128 to 127

	Integer
	int
	4
	–2,147,483,648 to 2,147,483,647

	short integer
	short
	2
	–32768 to 32767

	long integer
	long
	4
	–2,147,483,648 to 2,147,483,648

	unsigned character
	unsigned char
	1
	0 to 255

	unsigned integer
	unsigned int
	4
	0 to 4,294,967,295

	unsigned short integer
	unsigned short
	2
	0 to 65535

	unsigned long integer
	unsigned long
	4
	0 to 4,294,967,295

	single-precision
floating point
	float
	4
	1.2E–38 to 3.4E38
Approximate range; precision = 7 digits.

	double-precision
floating-point
	double
	8
	2.2E–308 to 1.8E308
Approximate range; precision = 19 digits.

 2.5: Practice Examples
Practice Examples
Now, take some time to perform the following exercises. They will provide you with experience in using what you've learned.

Exercise 1
In what variable type would you best store the following values?
 a. A person's weight in pounds.
 b. Your annual salary.
 c. The temperature.
 d. A person's net worth.
Answer
a. unsigned int
b. If your expectations on yearly salary are not very high, a simple unsigned int variable would work. If you feel you have potential to go above $65,535, you probably should use a long. (Have faith in yourself; use a long.)
c. float (If you are only going to use whole numbers, use either int or long.)
d. Definitely a signed field. Either int, long, or float. See answer for 1b.

Exercise 2
Determine appropriate variable names for the values in exercise one.
Answer

(Answers for 2 and 3 are combined)
Remember, a variable name should be representative of the value it holds. A variable declaration is the statement that initially creates the variable. The declaration may or may not initialize the variable to a value. You can use any name for a variable, except the C keywords.
a. unsigned int age;
b. unsigned int weight;
c. float radius = 3;
d. long annual_salary;
e. float cost = 29.95;
f. const int max_grade = 100;
or
#define MAX_GRADE 100
g. float temperature;
h. long net_worth = -30000;
i. double star_distance;

Exercise 3
Write declarations for the variables in exercise two.
Answer

(Answers for 2 and 3 are combined)
Remember, a variable name should be representative of the value it holds. A variable declaration is the statement that initially creates the variable. The declaration may or may not initialize the variable to a value. You can use any name for a variable, except the C keywords.
a. unsigned int age;
b. unsigned int weight;
c. float radius = 3;
d. long annual_salary;
e. float cost = 29.95;
f. const int max_grade = 100;
or
#define MAX_GRADE 100
g. float temperature;
h. long net_worth = -30000;
i. double star_distance;

 2.6: Summary

Numeric Variables
This unit has explored numeric variables, which are used by a C program to store data during program execution. You've seen that there are two broad classes of numeric variables, integer and floating point. Within each class are specific variable types. Which variable type—int, long, float, or double—you use for a specific application depends on the nature of the data to be stored in the variable. You've also seen that in a C program, you must declare a variable before it can be used. A variable declaration informs the compiler of the name and type of a variable.
Constants
This unit has also covered C's two constant types, literal and symbolic. Unlike variables, the value of a constant cannot change during program execution. You type literal constants into your source code whenever the value is needed. Symbolic constants are assigned a name that is used wherever the constant value is needed. Symbolic constants can be created with the #define directive or with the const keyword.
