3. Statements, Expressions, and Operators

C programs consist of statements, and most statements are composed of expressions and operators. You need an understanding of these three s to be able to write C programs.

This notes cover
· What an expression is.

· C's mathematical and relational operators and operator precedence.

· The if statement.

· The evaluation of relational expressions.

· C's logical operators.

· Other operators: compound assignment, conditional, and comma.

 3.1: Statements

Statements
A statement is a complete direction instructing the computer to carry out some task.
*

	Guideline
	Exception

	In C, statements are usually written one per line.
	Some statements span multiple lines.

	C statements always end with a semicolon.
	Except for preprocessor directives such as #define and #include, which are discussed on 1, "Taking Advantage of Preprocessor Directives and More".

For example, x = 2 + 3; is an assignment statement. It instructs the computer to add 2 to 3 and assign the result to the variable x.

 3.1.1: Statements and Whitespace
	Whitespace
The term whitespace refers to spaces, tabs, and blank lines in your source code.
C Ignores Whitespace
The C compiler is not sensitive to whitespace. When the compiler is reading a statement in your source code, it looks for the characters in the statement and for the terminating semicolon, but it ignores the whitespace. Click the Example link to see how whitespace works.
Example

DO stay consistent with how you use whitespace in statements.
DON'T spread a single statement across multiple lines if there is no need. Try to keep statements on one line.

The statements in the table are equivalent. This gives you a great deal of flexibility in formatting your source code. You shouldn't use formatting like Statement 3, however. Statements should be entered one per line with a standardized scheme for spacing around variables and operators.
If you follow the formatting conventions used in this course, you should be in good shape. As you become more experienced, you may discover that you prefer slight variations. The point is to keep your source code readable.

	Statement 1
	Statement 2
	Statement 3

	x=2+3;
	x = 2 + 3;
	 x = 2
+
 3;

	Exception
The rule that C doesn't care about whitespace has, however, one exception. Within literal string constants, tabs and spaces are not ignored, but are considered part of the string. So, for example, " 3" is different than "3". The first one is three spaces followed by the character 3. The second one is just the character 3.

Literal Strings
A string is a series of characters, for example, text that you might want to print out on the screen, or text that your program takes as input. Literal string constants are strings that are enclosed within quotes and interpreted literally by the compiler, space for space.
Breaking a Literal String
To make a literal string constant (often just called a "string") break across lines, you must use the backslash character (\) just before the break.
Examples

	Legal:
	Not Legal:

	printf("This is a \
really long character\
string.");
	printf("This is a
really long character
string.");

Null Statement
If you place a semicolon by itself on a line, you create a null statement, that is, a statement that doesn't perform any action. This is perfectly legal in C. Later in the course, you will learn how the null statement can be useful at times.

 3.1.2: Compound Statements

Compound Statements
A compound statement, also called a block, is a group of two or more C statements enclosed in braces. Click the Example link.
Example
Usage
In C, a block can be used anywhere a single statement can be used. Many examples of this appear throughout the course.

Here's an example of a block:
{
 printf("Hello, ");
 printf("world!");
}

Placement of Enclosing Braces
Note that the enclosing braces can be positioned in different ways. Click the Example link and the Tip button on the toolbar.
Example
It's a good idea to place braces on their own lines:

· The beginning and end of blocks are clearly visible.

· It is easier to see whether you've left one out.

	Due to space constraints, the convention followed in this course is to put the opening brace on the same line as the statement to which it applies.

DO be consistent with placement of block braces. Consider putting block braces on their own lines. This makes the code easier to read.

The following statements are equivalent.

	Statement 1
	Statement 2

	{
 printf("Hello, ");
 printf("world!");
}
	{printf("Hello, ");
printf("world!");}

 3.2: Expressions

Expressions
In C, an expression is anything that evaluates to a numeric value. C expressions come in all levels of complexity.
Let's take a look at simple expressions and complex expressions.

 3.2.1: Simple Expressions

Simple Expressions
The simplest C expression consists of a single item: a simple variable, literal constant, or symbolic constant.
Examples

Here are four simple expressions:
PI /* A symbolic constant (defined in the program). */
20 /* A literal constant. */
rate /* A variable. */
-1.25 /* Another literal constant. */

 3.2.2: Complex Expressions

Complex Expressions
More complex expressions consist of simpler expressions connected by operators.
Examples

2 + 8 is an expression consisting of the subexpressions 2 and 8 and the addition operator +. The expression 2 + 8 evaluates, as you know, to 10.
You can write C expressions of great complexity:
1.25 / 8 + 5 * rate + rate * rate / cost

	The statement
	Assigns

	y = x = a + 10;
	The value of the expression a + 10 to both variables, x and y.

	x = 6 + (y = 4 + 5);
	The value 9 to y and the value 15 to x.
Note: The parentheses are required for the statement to compile. The use of parentheses is covered later in this unit.

	
	

 3.3: Operators

Operators
An operator is a symbol that instructs C to perform some operation, or action, on one or more operands.
Operands
An operand is something that an operator acts on. In C, all operands are expressions. C operators fall into several categories.

 3.3.1: The Assignment Operator

The Equal Sign
The assignment operator is the equal sign (=). Its use in programming is somewhat different from its use in regular math.

	Expression
	Meaning in a C Program
	Meaning in Regular Math

	x = y;
	Assign the value of y to x
	x is equal to y

 3.3.2: Mathematical Operators

Two Unary and Five Binary Operators
C's mathematical operators perform mathematical operations such as addition and subtraction. C has two unary mathematical operators and five binary mathematical operators.

 3.3.3: The Unary Mathematical Operators

Unary Operator
The unary mathematical operators are so named because they take a single operand. C has two unary mathematical operators, listed here.

	Table 3.1: C's Unary Mathematical Operators

	Operator
	Symbol
	Action
	Example

	Increment
	++
	Increments operand by one
	++x, x++

	Decrement
	--
	Decrements operand by one
	--x, x--

	Statement
	Equivalent Statement

	++x;
	x = x + 1;

	--y;
	y = y - l;

Prefix Versus Postfix Mode
You should note from the table here that either unary operator can be placed before its operand (prefix mode) or after its operand (postfix mode). These two modes are not equivalent. They differ in terms of when the increment or decrement is performed:

	When used in this mode...
	The increment and decrement operators modify their operand...

	Prefix
	Before it is used in the expression.

	Postfix
	After it is used in the expression.

	Table 3.1: C's Unary Mathematical Operators

	Operator
	Symbol
	Action
	Example

	Increment
	++
	Increments operand by one
	++x, x++

	Decrement
	--
	Decrements operand by one
	--x, x--

Reminder: = Is Assignment, Not Equality
Remember that = is the assignment operator and not a statement of equality. As an analogy, think of = as the "photocopy" operator. The statement y = x means to copy x into y. Subsequent changes to x, after the copy has been made, have no effect on y.
Example Program
The program in Listing 3.1 illustrates the difference between prefix mode and postfix mode.

	Listing 3.1: Unary Operator Prefix and Postfix Modes

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
	/* LIST0401.c: Listing 3.1 */
/* Demonstrates unary operator */
/* prefix and postfix modes. */

#include <stdio.h>

int a, b;

int main(void){
 /* Set a and b both equal to 5. */

 a = b = 5;

 /* Print them, decrementing each time. */
 /* Use prefix mode for b, postfix mode for a. */

 printf("\n%d %d", a--, --b);
 printf("\n%d %d", a--, --b);
 printf("\n%d %d", a--, --b);
 printf("\n%d %d", a--, --b);
 printf("\n%d %d", a--, --b);

 return 0;
}

	Output
	5 4
4 3
3 2
2 1
1 0

	Description
	This program declares two variables, a and b, in line 7. In line 12, the variables are set to the value of 5. With the execution of each printf () statement (lines 17 – 21), both a and b are decremented by one. The variable a is decremented after it is printed and b is decremented before it is printed.

 3.3.4: The Binary Mathematical Operators

Binary Operator
C's binary operators take two operands. The binary operators, which include the common mathematical operations found on a calculator, are listed in Table 3.2.

Arithmetic Operators
These five operators are also known as the arithmetic operators. The first four operators in Table 3.2 should be familiar to you, and you should have little trouble using them. The fifth operator, modulus, may be new.

	Table 3.2: C's Binary Mathematical Operators

	Operator
	Symbol
	Action
	Example

	Addition
	+
	Adds its two operands
	x + y

	Subtraction
	-
	Subtracts the second operand from the first operand
	x - y

	Multiplication
	*
	Multiplies its two operands
	x * y

	Division
	/
	Divides the first operand by the second operand
	x / y

	Modulus
	%
	Gives the remainder when the first operand is divided by the second operand
	x % y

Modulus
Modulus returns the remainder when the first operand is divided by the second operand.
Example
The program in Listing 3.2 illustrates how you can use the modulus operator to convert a large number of seconds into hours, minutes, and seconds.

	Listing 3.2: The Modulus Operator

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
 27:
 28:
 29:
	/* LIST0402.c: Listing 3.2 */
/* Illustrates the modulus operator. */
/* Inputs a number of seconds, and converts to */
/* hours, minutes, and seconds. */

#include <stdio.h>

#define SECS_PER_MIN 60 /* Define constants. */
#define SECS_PER_HOUR 3600

unsigned seconds, minutes, hours;
unsigned secs_left, mins_left;

int main(void) {
 /* Input the number of seconds. */

 printf("Enter number of seconds (<65000): ");
 scanf("%d", &seconds);

 hours = seconds / SECS_PER_HOUR;
 minutes = seconds / SECS_PER_MIN;
 mins_left = minutes % SECS_PER_MIN;
 secs_left = seconds % SECS_PER_MIN;

 printf("%u seconds is equal to ", seconds);
 printf("%u h, %u m, and %u s",
 hours, mins_left, secs_left);
 return 0;
}

	Output
	E:\>list0402
Enter number of seconds (< 65000): 60
60 seconds is equal to 0 h, 1 m, and 0 s

E:\>list0402
Enter number of seconds (< 65000): 10000
10000 seconds is equal to 2 h, 46 m, and 40 s

	Description
	Listing 3.2 follows the same format that all the previous programs have followed. Lines 1 - 4 provide some comments to state what the program is going to do.

Line 5 is whitespace to make the program more readable. Just like the whitespace in statements and expressions, blank lines are ignored by the compiler.

Line 6 includes the necessary header file for this program.

Lines 8 and 9 define two constants, SECS_PER_MIN and SECS_PER_HOUR, that are used to make the statements in the program easier to read.

Lines 11 and 12 declare all the variables that will be used. Some people choose to declare each variable on an individual line. As with many elements of C, this is matter of style. Either method is correct.

Line 14 is the main() function, which contains the bulk of the program. To convert seconds to hours and minutes, the program must first get the values it needs to work with. To do this, line 17 uses the printf() function to display a statement on the screen followed by line 18, which uses the scanf() function to get the number entered by the user. The scanf() statement then stores the number of seconds to be converted into the variable seconds. The printf() and scanf() functions are covered in more detail on , "Basic Input/Output."

Line 20 contains an expression to determine the number of hours by dividing the number of seconds by the constant SECS_PER_HOUR. Because hours is an integer variable, the remainder value is ignored.

Line 21 uses the same logic to determine the total number of minutes for the seconds entered. Because the total number of minutes figured in line 21 also contains minutes for the hours, line 22 uses the modulus operator to divide out the hours and keep the remaining minutes.

Line 23 does a similar calculation for determining the number of seconds that are left.

Lines 25, 26 and 27 are reflective of what you have seen before. They take the values that have been calculated in the expressions and display them.

Line 28 finishes the program by returning 0 to the operating system before exiting.

11 modulus 4 equals 3 (that is, 4 goes into 11 two times with 3 left over).
Here are some more examples:
100 modulus 9 equals 1
10 modulus 5 equals 0
40 modulus 6 equals 4

 3.3.5: Operator Precedence and Parentheses

Importance of Order of Evaluation
In an expression that contains more than one operator, what is the order in which operations are performed?
Example
Operator Precedence
Clearly, some rules are needed about the order in which operations are performed. This order, called operator precedence, is strictly spelled out in C. Each operator has a specific precedence.
Higher Precedence Performed First
When an expression is evaluated, operators with higher precedence are performed first. For example, multiplication, division and modulus have a greater precedence than addition and subtraction.

DO use parentheses to make the order of expression evaluation clear.
DON'T overload an expression. It is often more clear to break an expression into two or more statements. This is especially true when using the unary operators (--) or (++).

	The importance of this question is illustrated by the following assignment statement: x = 4 + 5 * 3;

	If this operation is performed first ...
	You have ...
	And x is assigned the value ...

	Addition 4+5
	x = 9 * 3;
	27

	Multiplication 5*3
	x = 4 + 15;
	19

Mathematical Operator Precedence
In any C expression, operations are performed in the following order:
1. Unary increment and decrement
2. Multiplication, division, and modulus
3. Addition and subtraction

Same Precedence: Left-To-Right
If an expression contains more than one operator with the same precedence level, the operators are performed in left-to-right order as they appear in the expression.
Example

In the expression 12 % 5 * 2 the % and * have the same precedence level, but the % is the leftmost operator, so it is performed first. The expression evaluates to 4 (12 % 5 evaluates to 2; 2 times 2 is 4).
Returning to the previous example, you see that the statement x = 4 + 5 * 3; assigns the value 19 to x because the multiplication is performed before the addition.

Parentheses Modify Evaluation Order
What if the order of precedence does not evaluate your expression as needed? Using the previous example, what if you wanted to add 4 to 5 and then multiply the sum by 3? C uses parentheses to modify the evaluation order. A subexpression enclosed in parentheses is evaluated first, without regard to operator precedence.

Example

	Look at the following complex expression:

x = 25 - (2 * (10 + (8 / 2)))
This evaluation proceeds in the following steps:

	Step
	Action

	1
	The innermost expression, 8 / 2, is evaluated first, yielding the value 3.
25 - (2 * (10 + 4))

	2
	Moving outward, the next expression, which becomes l0 + 4, is evaluated, yielding the value 14.
25 - (2 * 14)

	3
	The last, or outermost, expression becomes 2 * 14 and is evaluated, yielding the value 28.
25 - 28

	4
	The final expression, 25 - 28, is evaluated, assigning the value -3 to the variable x.
x = -3

Parentheses for Clarity
You may want to use parentheses in some expressions for the sake of clarity, even when they are not needed for modifying operator precedence. Parentheses must always be in pairs, or the compiler generates an error message.

 3.3.6: Relational Operators

Relational Operators
C's relational operators are used to compare expressions, "asking" questions such as, "Is x greater than 100?" or "Is y equal to 0?" An expression containing a relational operator evaluates as either true (1) or false (0).
Six Relational Operators
C's six relational operators are listed here.
Usage
These examples use literal constants, but the same principles hold with variables.

	Table 3.3: C's Relational Operators

	Operator
	Symbol
	Question Asked
	Example

	Equal
	==
	Is operand 1 equal to operand 2?
	x == y

	Greater than
	>
	Is operand 1 greater than operand 2?
	x > y

	Less than
	<
	Is operand 1 less than operand 2?
	x < y

	Greater than or equal
	>=
	Is operand 1 greater than or equal to operand 2?
	x >= y

	Less than or equal
	<=
	Is operand 1 less than or equal to operand 2?
	x <= y

	Not equal
	!=
	Is operand 1 not equal to operand 2?
	x != y

	Table 3.4: Relational Operators in Use

	Expression
	Evaluates As

	5 == 1
	0 (false)

	5 > 1
	1 (true)

	5 != 1
	1 (true)

	(5 + 10) == (3 * 5)
	1 (true)

DO learn how C interprets true and false. When working with relational operators, true is equal to 1, and false is equal to 0.
DON'T confuse ==, the relational operator, with =, the assignment operator. This is one of the most common errors that C programmers make!

 3.4: The if Statement

Use of Relational Operators
Relational operators are used mainly to construct the relational expressions used in if and while statements, covered in detail on , "Basic Program Control." For now, it is useful to explain the basics of the if statement to show how relational operators are used to make program control statements.

Program Control Statements
You may be wondering what a program control statement is. Statements in a C program normally execute from top to bottom, in the same order as they appear in your source code file. A program control statement modifies the order of statement execution. Program control statements can cause other program statements to execute multiple times or to not execute at all, depending on the circumstances. The if statement is one of C's program control statements. Others, such as do and while, are covered on , "Basic Program Control."

Basic Syntax
In its basic form, the if statement evaluates an expression and directs program execution depending on the result of that evaluation. The form of an if statement is as follows:
if (expression)
statement;

DO remember that if you program too much in one day, you'll get C sick.
DON'T make the mistake of putting a semicolon at the end of an if statement. An if statement should end with the conditional statement that follows it. In the following, statement1 executes whether x equals 2 or not, because each line is evaluated as a separate statement, not together as intended!
if (x == 2); /* Semicolon does not belong! */
statement1;

Process
If the if expression evaluates as true, the statement is executed. If the if expression evaluates as false, the statement is not executed. In either case, execution then passes to whatever code follows the if statement. You can say that execution of statement depends on the result of expression. Note that both the line if (expression) and the line statement; are considered to make up the complete if statement. They are not separate statements.

Syntax with Multiple Statements
An if statement can control the execution of multiple statements through the use of a compound statement, or block. As defined earlier in this unit, a block is a group of two or more statements enclosed in braces. A block can be used anywhere a single statement can be used. You could therefore write an if statement as follows:
if (expression) {
 statement-1;
 statement-2;
 /* additional code goes here */
 statement-n;
}

With Relational Expressions
In your programming, you will find that if statements are used most often with relational expressions; in other words, "execute the following statement(s) only if such-and-such a condition is true."
Example

Here's an example:
if (x > y)
 y = x;
This code assigns the value of x to y only if x is greater than y. If x is not greater than y, no assignment takes place.

An Else Clause
An if statement can optionally include an else clause. The else clause is included as follows:
if (expression)
 statement-l;
else
 statement-2;
If expression is true, statement-1 is executed. If expression is false, statement-2 is executed. Both statement-1 and statement-2 can be compound statements, or blocks.
Example Programs
Listing 3.3 presents a short program that illustrates the use of if statements. Listing 3.4 shows the program in Listing 3.3 rewritten to use an if statement with an else clause.

	Listing 3.3: The if Statement

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
 27:
	/* LIST0403.c: Listing 3.3 */
/* Demonstrates the use of if statements. */

#include <stdio.h>

int x, y;

int main(void) {
 /* Input the two values to be tested. */

 printf("\nInput an integer value for x: ");
 scanf("%d", &x);
 printf("\nInput an integer value for y: ");
 scanf("%d", &y);

 /* Test values and print result. */

 if (x == y)
 printf("x is equal to y");

 if (x > y)
 printf("x is greater than y");

 if (x < y)
 printf("x is smaller than y");
 return 0;
}

	Output
	E:\>list0403

Input an integer value for x: 100

Input an integer value for y: 10
x is greater than y

E:\>list0403

Input an integer value for x: 10

Input an integer value for y: 100
x is smaller than y

E:\>list0403

Input an integer value for x: 10

Input an integer value for y: 10
x is equal to y

	Description
	Listing 3.3 shows three if statements in action (lines 18 – 25). Many of the lines in this program should be familiar. Line 6 declares two variables, x and y, and lines 11 – 14 prompt the user for values to be placed into these variables.

Lines 18 – 25 use if statements to determine whether x is greater than, less than, or equal to y. Note that line 18 uses an if statement to see whether x is equal to y. Remember ==, the equal operator, is the same as "is equal to" and should not be confused with =, the assignment operator.

After the program checks to see whether the variables are equal, in line 21 it checks to see whether x is greater than y, followed by a check in line 24 to see whether x is less than y. You might think that this is inefficient, and you are right. In the next program, you will see how to avoid this inefficiency. For now, run the program with different values for x and y to see the results.

	Listing 3.4: if Statement with an else Clause

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
 27:
	/* LIST0403.c: Listing 3.4 */
/* Demonstrates the use of an if statement */
/* with an else clause. */

#include <stdio.h>

int x, y;

int main(void) {
 /* Input the two values to be tested. */

 printf("\nInput an integer value for x: ");
 scanf("%d", &x);
 printf("\nInput an integer value for y: ");
 scanf("%d", &y);

 /* Test values and print result. */

 if (x == y)
 printf("x is equal to y");
 else
 if (x > y)
 printf("x is greater than y");
 else
 printf("x is smaller than y");
 return 0;
}

	Output
	E:\>list0404

Input an integer value for x: 99

Input an integer value for y: 8
x is greater than y

E:\>list0404

Input an integer value for x: 8

Input an integer value for y: 99
x is smaller than y

E:\>list0404

Input an integer value for x: 99

Input an integer value for y: 99
x is equal to y

	Description
	Lines 19 – 25 are slightly different from the previous listing. Line 19 still checks to see whether x equals y. If x does equal y, x is equal to y is printed just as in Listing 3.3; however, the program then ends.

Lines 21 – 25 are not executed. Line 22 is executed only if x is not equal to y, or to be more accurate, if the expression "x equals y" is false. If x does not equal y, line 22 checks to see whether x is greater than y. If so, line 23 prints x is greater than y, otherwise (else) line 25 is executed.

Note that the program in Listing 3.4 uses a nested if statement. Nesting means to place (nest) one or more C statements inside another C statement. In the case of Listing 3.4, an if statement is part of the first if statement's else clause.

3.5: Evaluation of Relational Expressions

Evaluate to a Value
Remember that expressions using relational operators are true C expressions that evaluate, by definition, to a value. Relational expressions evaluate to a value of either false (0) or true (1). Although the most common use for relational expressions is within if statements and other conditional constructions, they can be used as purely numeric values. This is illustrated by the program in Listing 3.5.

	Listing 3.5: The Evaluation of Relational Expressions

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
	/* LIST0405.c: Listing 3.5 */
/* Demonstrates the evaluation of relational */
/* expressions. */

#include <stdio.h>

int a;

int main(void) {
 a = (5 == 5); /* Evaluates to 1. */
 printf("\na = (5 == 5)\na = %d", a);

 a = (5 != 5); /* Evaluates to 0. */
 printf("\na = (5 != 5)\na = %d", a);

 a = (12 == 12) + (5 != 1); /* 1 + 1. */
 printf("\na = (12 == 12) + (5 != 1)\na = %d", a);
 return 0;
}

	Output
	a = (5 == 5)
a = 1
a = (5 != 5)
a = 0
a = (12 == 12) + (5 != 1)
a = 2

	Description
	The output from this listing may seem a little confusing at first. Remember, the most common mistake people make when using the relational operators is to use a single equal sign – the assignment operator – instead of a double equal sign.

The expression x = 5 evaluates as 5 (and also assigns the value 5 to x). In contrast, the expression x == 5 evaluates as either 0 or 1 (depending on whether x is equal to 5) and does not change the value of x. If by mistake you write

if (x = 5)
 printf("x is equal to 5");

the message always prints because the expression being tested by the if statement always evaluates as true, no matter what the original value of x happens to be.

Looking at Listing 3.5, you can begin to understand why a takes on the values that it does. In line 10, the value 5 does equal 5, therefore true (1) is assigned to a. In line 13, the statement "5 does not equal 5" is false, so 0 is assigned to a.

3.6: Logical Operators

Combining Relational Operators
At times, you may need to ask more than one relational question at the same time. For example, "If it's 7:00 AM and a weekday and not your vacation, ring the alarm." C's logical operators enable you to combine two or more relational expressions into a single expression that evaluates as either true or false. C's three logical operators are listed here.

	Table 3.5: C's Logical Operators

	Operator
	Symbol
	Example

	and
	&&
	exp1 && exp2

	or
	""
	exp1 "" exp2

	not
	!
	!exp1

DO use (expression == 0) instead of (!expression). When compiled, these two expressions evaluate the same; however, the first is more readable.
DO use the logical operators && and "" instead of nesting if statements.

 3.6.1: Logical Operators in Use

Expressions Evaluate as True or False
The way logical operators work is explained here.
You can see that expressions which use the logical operators evaluate as either true or false depending on the true/false value of their operand(s).

	Table 3.6: C's Logical Operators in Use

	Expression
	Evaluates As

	(exp1 && exp2)
	True (1) only if both exp1 and exp2 are true; false (0) otherwise.

	(exp1 "" exp2)
	True (1) if either exp1 or exp2 is true; false (0) only if both are false.

	(!exp1)
	False (0) if exp1 is true; true (1) if exp1 is false.

	Table 3.7: Code Examples of C's Logical Operators

	Expression
	Evaluates As

	(5 == 5) && (6 != 2)
	True (1) because both operands are true.

	(5 > 1) "" (6 < 1)
	True (1) because one operand is true.

	(2 == 1) && (5 == 5)
	False (0) because one operand is false.

	!(5 == 4)
	True (1) because the operand is false.

Multiple Logical Operators
You can create expressions that use multiple logical operators. For example, to ask the question "Is x equal to 2, 3, or 4?" you would write
(x == 2) "" (x == 3) "" (x == 4)
The logical operators often provide more than one way to ask a question. If x is an integer variable, the previous question also could be written in either of the following ways:
(x > 1) && (x < 5) or (x >= 2) && (x <= 4)
 3.6.2: More on True/False Values

Numeric Values Interpreted as True or False
You've seen that C's relational expressions evaluate to 0 to represent false and to 1 to represent true. It's important to be aware, however, that any numeric value is interpreted as either true or false when it is used in a C expression or statement that is expecting a logical (that is, a true or false) value.

Rules
The rules for this are as follows:

· A value of zero represents false.

· Any nonzero value represents true.

· Any assignment statement represents the value of the variable after assignment

Example
You can further generalize this because, for any C expression, writing (expression) is equivalent to writing (expression != 0). Both evaluate as true if expression is nonzero, and as false if expression is 0. Using the not (!) operator, you can also write (!expression) which is equivalent to (expression == 0).

The following example illustrates the principle that a non-zero value represents true:
x = 125;
if (x)
 printf("%d", x);
In this case, the value of x is printed. Because x has a nonzero value, the expression (x) is interpreted as true by the if statement.

The following example illustrates the principle that an assignment statement represents the value of the variable after assignment:

x = 1;

if (x=0)

printf("%d", x);

In this case, the value of x is not printed because it has been assigned the value 0. Note that the addition of another equals sign would change the meaning of the expression inside the if statement. If the statement read if (x==0) the condition would be read as false, since x was assigned the value 1.

 3.6.3: Precedence of Logical Operators

Precedence of ! Operator
As you may have guessed, C's logical operators also have a precedence order, both among themselves and in relation to other operators. The ! operator has a precedence equal to the unary mathematical operators ++ and -- . Thus, ! has a higher precedence than all the relational operators and all the binary mathematical operators.

Precedence of && and "" Operators
In contrast, the && and "" operators have much lower precedence, lower than all the mathematical and relational operators, although && has a higher precedence than, "". As with all of C's operators, parentheses can be used to modify evaluation order when using the logical operators. Look at the following example.
Example

You want to write a logical expression that makes three individual comparisons:
1. Is a less than b?
2. Is a less than c?
3. Is c less than d?
You want the entire logical expression to evaluate as true if condition 3 is true and either condition 1 or condition 2 is true. You might write
a < b "" a < c && c < d
This does not, however, do what you intended. Because the && operator has higher precedence than "", the expression is equivalent to
a < b "" (a < c && c < d)
and evaluates as true if (a < b) is true, whether or not the relationships (a < c) and (c < d) are true. You need to write
(a < b "" a < c) && c < d
which forces the "" to be evaluated before the &&.

Example Program
Listing 3.6 evaluates the expression a < b "" a < c && c < d written with and without parentheses. The variables are set so that, if written correctly, the expression should evaluate as false (0).

	Listing 3.6: Logical Operator Precedence

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
 27:
	/* LIST0406.c: Listing 3.6 */
/* Demonstrates logical operator precedence. */

#include <stdio.h>

/* Initialize variables. c is not less than d, */
/* which is one of the conditions to test for. */
/* Therefore, the entire expression should */
/* evaluate as false. */

int a = 5, b = 6, c = 5, d = 1;
int x;

int main(void) {
 /* Evaluates expression without parentheses. */

 x = a < b "" a < c && c < d;
 printf("\nWithout parentheses the expression "
 "evaluates as %d", x);

 /* Evaluates expression with parentheses. */

 x = (a < b "" a < c) && c < d;
 printf("\nWith parentheses the expression "
 "evaluates as %d", x);
 return 0;
}

	Output
	Without parentheses the expression evaluates as 1
With parentheses the expression evaluates as 0

	Description
	The two values printed for the expression are different. This program initializes four variables in line 11 with values to be used in the comparisons. Line 12 declares x to be used to store and print the results. Lines 17 and 23 use the logical operators. Line 17 does not use the parentheses, so the results are determined by operator precedence. In this case, the results are not those you desired. Line 23 uses parentheses to change the order in which the expressions are evaluated.

 3.6.5: The Conditional Operator

Ternary Operator
The conditional operator is C's only ternary operator, meaning that it takes three operands.
Syntax
The syntax of the conditional operator is
test-expression ? expression-1 : expression-2
If test-expression evaluates as true (that is, nonzero), the entire expression evaluates as the value of expression-1. If test-expression evaluates as false (that is, zero), the entire expression evaluates as the value of expression-2.
Example

For example, the statement
x = y ? 1 : 100;
assigns the value 1 to x if y is true and assigns 100 to x if y is false. Likewise, to make z equal to the larger of x and y, you could write
z = (x > y) ? x : y;

Compared to an if Statement
Perhaps you've noticed that the conditional operator functions somewhat like an if statement. The previous statement could also be written
if (x > y)
 z = x;
else
 z = y;
The conditional operator can't be used in all situations in place of an if...else construction, but the conditional operator is more concise. The conditional operator can also be used in places you can't use an if statement, such as inside a single printf () statement.

 3.6.6: The Comma Operator

Comma as a Punctuation Mark
The comma is frequently used in C as a simple punctuation mark, serving to separate variable declarations, function arguments, and so on.
Comma as an Operator
In certain situations the comma acts as an operator rather than just as a separator. You can form an expression by separating two subexpressions with a comma. The result is as follows:

· Both expressions are evaluated, with the left expression being evaluated first.

· The entire expression evaluates as the value of the right expression.

While this is a legal statement, it leads to code that is difficult to read and maintain. Usually, the subexpressions should be written as separate lines of code.
Example
As the next unit teaches you, the most common use of the comma operator is in for statements.

The statement
x = (a++, b++);
assigns the value of b to x, then increments a, and then increments b. Because the ++ operator is used in postfix mode, the value of b – before it is incremented – is assigned to x. Using parentheses is necessary because the comma operator has a low precedence, even lower than the assignment operator.

 3.7: Q&A

Questions & Answers
Take a look at some questions that are frequently asked by programmers new to C.

Question 1
What effect do spaces and blank lines have on how a program runs?
Answer
Whitespace (lines, spaces, tabs) makes the code listing more readable. When the program is compiled, whitespace is stripped and thus has no effect on the executable program. For this reason, whitespace should be used to make your program easier to read.

Question 2
Is it better to code a compound if statement or to nest multiple if statements?
Answer
You should make your code easy to understand. If you nest if statements, they are evaluated as shown in the unit. If you use a single compound statement, the expressions are evaluated from left to right until the truth or falsehood of the entire statement is known.

Question 3
What is the difference between unary and binary operators?
Answer
As the names imply, unary operators work with one variable and binary work with two.

Question 4
Is the subtraction operator (-) binary or unary?
Answer
It's both! The compiler is smart enough to know which you are using. It knows which form to use based on the number of variables in the expression that is used. In the following statement, it is a unary:
x = -y;
versus the following binary use:
x = a - b;

Question 5
Are negative numbers considered to be true or false?
Answer
Remember 0 is false, and any other value is true. This includes negative numbers.

 3.8: Practice Examples
Practice Examples
Now, take some time to perform the following exercises. They will provide you with experience in using what you've learned.

Exercise 1
The following code is not well formatted. Enter and compile it to see whether it works.
#include <stdio.h>
int x,y;int main(void){ printf(
"\nEnter two numbers");scanf(
"%d %d" , &x, &y);printf(
"\n\n%d is bigger",(x>y)?x:y);return 0;}
Answer

The listing should have worked even though it was poorly structured. The purpose of the listing was to demonstrate that whitespace is irrelevant to how the program runs. You should use whitespace to make your programs readable.
Exercise 2
The code from exercise one follows. Rewrite the code to be more readable.
#include <stdio.h>
int x,y;int main(void){ printf(
"\nEnter two numbers");scanf(
"%d %d" , &x, &y);printf(
"\n\n%d is bigger",(x>y)?x:y);return 0;}
Answer

The following is a better way to structure the exercise one listing:
#include <stdio.h>
int x, y;
int main(void) {
 printf("\nEnter two numbers");
 scanf("%d %d" , &x, &y);
 printf("\n\n%d is bigger", (x > y) ? x : y);

 return 0;
}
The listing asks for two numbers, x and y, and then prints which is bigger.

Exercise 3
Change the Exercise 3.3 program to count upward instead of downward.
Answer

	Listing 3.1: Unary Operator Prefix and Postfix Modes

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
	/* LIST0401.c: Listing 3.1 */
/* Demonstrates unary operator */
/* prefix and postfix modes. */

#include <stdio.h>

int a, b;

int main(void){
 /* Set a and b both equal to 5. */

 a = b = 5;

 /* Print them, decrementing each time. */
 /* Use prefix mode for b, postfix mode for a. */

 printf("\n%d %d", a--, --b);
 printf("\n%d %d", a--, --b);
 printf("\n%d %d", a--, --b);
 printf("\n%d %d", a--, --b);
 printf("\n%d %d", a--, --b);

 return 0;
}

	Output
	5 4
4 3
3 2
2 1
1 0

	Description
	This program declares two variables, a and b, in line 7. In line 12, the variables are set to the value of 5. With the execution of each printf () statement (lines 17 – 21), both a and b are decremented by one. After it is printed, a is decremented. b is decremented before it is printed.

The only changes needed in Listing 3.1 are the following:
11: printf("\n%d %d", a++, ++b);
12: printf("\n%d %d", a++, ++b);
13: printf("\n%d %d", a++, ++b);
14: printf("\n%d %d", a++, ++b);
15: printf("\n%d %d", a++, ++b);

Exercise 4
Write an if statement that assigns the value of x to the variable y only if x is between 1 and 20. Leave y unchanged if x is not in that range.
Answer

The following code fragment is just one of many possible examples. It checks to see if x is greater than or equal to 1 and if x is less than or equal to 20. If these two conditions are met, x is assigned to y. If these conditions are not met, s is not assigned to y; therefore, y remains the same.
if ((x > 1) && (x < 20))
 y = x;

Exercise 5
Use the conditional operator to perform the same task as in exercise four.
Answer

y = ((x >= 1) && (x <= 20)) ? x : y;

Exercise 6
Rewrite the following nested if statements using a single if statement and compound operators.
if (x > 1)
 if (x < 10)
 statement;
Answer

if (x > 1 && x < 10)
 statement;

Exercise 7
To what value do each of the following expressions evaluate?
 a. (1 + 2 * 3)
 b. 10 % 3 * 3 - (1 + 2)
 c. ((1 + 2) * 3)
 d. (5 == 5)
 e. (x = 5)
Answer

 a. (1 + 2 * 3) = 7
 b. 10 % 3 * 3 - (1 + 2) = 0
 c. ((1 + 2) * 3) = 9
 d. (5 == 5) = 1 (true)
 e. (x = 5) = 5

Exercise 8
Write an if statement that determines whether someone is legally an adult (age 21), but not a senior citizen (age 65).
Answer

We did not do what this exercise asked; however, you can get the answer to the question from this nested if. (You also could have indented this differently.)
if(age < 21)
 printf("You are not an adult");
else if(age >= 65)
 printf("You are a senior citizen!");
 else
 printf("You are an adult");

Exercise 9
BUG BUSTERS: Fix the following program so that it runs correctly.
/* a program with problems... */
#include <stdio.h>
int x= 5:
main() {
 if(x = 5);
 printf("x equals 5");
 otherwise
 printf("x does not equal 5");
 return 0;
}
Answer

This program had four problems. The first was on line 3. The assignment statement should end with a semicolon, not a colon.

The second problem was the semicolon at the end of the if statement on line 5. Only the statements inside the if statment get semicolons.

The third problem is common; the assignment operator (=) was used rather than the relational operator (==) in the if statement.

The final problem was the word otherwise on line 7. This should be else.
01: /* a program with problems... */
02: #include <stdio.h>
03: int x= 5;
04: main() {
05: if(x == 5)
06: printf("x equals 5");
07: else
08: printf("x does not equal 5");
09: return 0;
10: }

 3.9: Summary

Statements
This unit has covered a lot of material. You have learned what a C statement is, that whitespace does not matter to a C compiler, and that statements always terminate with a semicolon. You've also learned that a compound statement (or block), which consists of two or more statements enclosed in braces, can be used anywhere a single statement can be used.
Expressions
Many statements are made up of some combination of expressions and operators. Remember that an expression is anything that evaluates to a numeric value. Complex expressions can contain many simpler expressions, which are called subexpressions.

Operators
Operators are C symbols that instruct the computer to perform an operation on one or more expressions. Some operators are unary, which means that they operate on a single operand. Most of C's operators are binary, however, operating on two operands. One operator, the conditional operator, is ternary. C's operators have a defined hierarchy of precedence that determines the order in which operations are performed in an expression that contains multiple operators.

Three Categories of Operators
The C operators covered by this unit fall into three categories, indicating that

· Mathematical operators perform arithmetic operations on their operands (for example, addition).

· Relational operators perform comparisons between their operands (for example, greater than).

· Logical operators operate on true/false expressions. Remember that C uses 0 and 1 to represent false and true, respectively, and that any nonzero value is interpreted as being true.

The if Statement
You've also been introduced to C's if statement, which enables you to control program execution based on the evaluation of relational expressions.
26

