4. Functions: The Basics

Functions are central to programming in general and to the philosophy of C program design. We have already seen some of C's library functions in the lab, such as printf, scanf and sizeof which are complete functions supplied as part of your compiler. This unit covers user-defined functions which, as the name implies, are functions that you, the programmer, create.

This section covers

· What a function is and what its parts are.

· About the advantages of structured programming with functions.

· How to create a function.

· About the declaration of local variables in a function.

· How to return a value from a function to the program.

· How to pass arguments to a function.

 4.1: What Is a Function?

4.1.1: A Function Defined

Functions
First the definition: a function is a named, independent section of C code that performs a specific task and optionally returns a value to the calling program.
 4.1.2: A Function Illustrated

Example Program
The program in Listing 4.1 contains a user-defined function.
	Listing 4.1: Calculating Cubes

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
	/* LIST0501.c: Listing 4.1 */
/* Demonstrates a simple function */

#include <stdio.h>

long cube(long x);
long input, answer;

int main(void) {
 printf("Enter an integer value: ");
 scanf("%d", &input);
 answer = cube(input);
 /* Note: %ld is the conversion specifier */
 /* for a long integer. */
 printf("\n\nThe cube of %ld is %ld.",
 input, answer);
 return 0;
}

long cube(long x) {
 long x_cubed;

 x_cubed = x * x * x;
 return x_cubed;
}

	Output
	E:\>list0501
Enter an integer value: 100
The cube of 100 is 1000000.
E:\>list0501
Enter an integer value: 9
The cube of 9 is 729.
E:\>list0501
Enter an integer value: 3
The cube of 3 is 27.

	Description
	We're going to concentrate on the components of the program that relate directly to the function rather than explain the entire program.
The Function Prototype
Line 6 contains the function prototype, a model for a function that will appear later in the program. A function's prototype contains the name of the function, a list of variables that must be passed to it, and the type of variable it returns, if any.
 Looking at line 6 you can tell that the function is named cube(), that it requires a variable of the type long, and that it will return a value of type long. The list of variables to be passed to the function are called arguments and appear between the parentheses following the function's name. In this example, the function's argument is long x. The keyword before the name of the function indicates the type of variable the function returns. In this case, a type long variable is returned.

The Function Call
Line 12 calls the function cube() and passes the variable input to it as the function's argument. The function's return value is assigned to the variable answer. Notice that both input and answer are declared on line 7 as long variables, keeping with the function prototype on line 6.

The Function Definition
The function itself is called the function definition. In this case, it's called cube() and is contained on program lines 20 – 24. Like the prototype, the function definition has several parts. The function starts out with a function header on line 20. The function header is at the start of a function and gives the function's name (in this case, the name is cube). The header also gives the function's return type and describes its arguments. Note that the function header is identical to the function prototype (minus the semicolon).

The Function Body
The body of the function, lines 21 – 24, is enclosed in braces. The body contains statements, such as shown on line 23, that are executed whenever the function is called. Line 21 is a variable declaration that looks like the declarations you have seen before, with one difference: it is local. Local variables are those that are declared within a function body. (Local declarations are discussed further on 2, "Variable Scope.")
Finally, the function concludes with a return statement on line 24, which signals the end of the function. A return statement also passes a value back to the calling program. In this case, the value of the variable x_cubed is returned.

cube() Versus main()
If you compare the structure of the cube() function with that of the main() function, you see that they are the same. main() is also a function. Other functions that you already have used are printf() and scanf(). Although printf() and scanf() are library functions (as opposed to user-defined functions) they are functions that can take arguments and return values just like the functions you create.

4.2: Functions and Structured Programming

Structured Programming
By using functions in your C programs, you can practice structured programming in which individual program tasks are performed by independent sections of program code. "Independent sections of program code.
 4.2.1: The Advantages of Structured Programming

Easier to Write
Why is structured programming so great? There are two important reasons:
It's easier to write a structured program because complex programming problems are broken into a number of smaller, simpler tasks. Each task is performed by a function in which code and variables are isolated from the rest of the program. You can make progress faster dealing one at a time with these relatively simple tasks.
Easier to Debug
It's easier to debug a structured program. If your program has a bug (something that causes it to work improperly), a structured design makes it easy to isolate the problem to a specific section of code (a specific function).

Saves You Time
A related advantage of structured programming is the time you can save. If you write a function to perform a certain task in one program, you quickly and easily can use it in another program that needs to execute the same task. Even if the new program needs to accomplish a slightly different task, you often find that modifying a function you created earlier is easier than writing a new one from scratch. Consider how much you've used the two functions printf() and scanf() even though you probably haven't seen the code they contain. If your functions have been created to do a single task, using them in other programs is much easier.
By using structured programming, C programmers take the top-down approach. You saw this illustrated in Figure 4.2 where the program's structure resembles an inverted tree. Many times, most of the real work of the program is performed by the functions at the "tips of the branches." The functions closer to the "trunk" primarily direct program execution among these functions.
4.3: Writing a Function

Writing a Function
The first step in writing a function is knowing what you want the function to do. Once this is established, you need to write
1) Function declaration (function prototype)
2) Function definition (header + body) and
4.3.1: The Function Prototype (declaration)
* Prototypes are Required
A program must include a prototype for each function that it uses. You saw an example of a function prototype on line 6 of Listing 4.1, and there have been function prototypes in the other listings as well. What is a function prototype, and why is it needed?
The Prototype's Format
You can see from the earlier examples that the prototype for a function is identical to the function header, with a semicolon added at the end. Like the function header, the function prototype includes information about the function's return type, name, and parameters.

The Prototype's Job
The prototype's job is to tell the compiler about the function's return type, name, and parameters. With this information, the compiler can check every time your source code calls the function and verify that you are passing the correct number and type of arguments to the function and using the return value correctly. If there's a mismatch, the compiler generates an error message.
 4.3.2: The Function definition
a- Header
The first line of every function is the function header.
No Semicolon
You do not place a semicolon at the end of a function header. If you mistakenly include one, the compiler generates an error message.
Three Components
A function header has three components, each serving a specific function. They are diagrammed in Figure 4.3 and explained on the following pages.

The Function Return Type
The function return type specifies the data type that the function returns to the calling program. The return type can be any of C's data types: char, int, long, float, or double. You can also define a function that doesn't return a value. This type of function has the return type void. Here are some examples:
int func1(...) /* Returns a type int. */
float func2(...) /* Returns a type float. */
void func3(...) /* Returns nothing. */

 The Function Name
You can name a function anything you like, as long as you follow the rules for C variable names (given in , "Numeric Variables and Constants"). A function name must be unique (not assigned to any other function or variable). It's a good idea to assign a name that reflects what the function does.
The Parameter List
Many functions use arguments, which are values passed to the function when it is called. A function needs to know what kinds of arguments to expect—the data type of each argument. You can pass a function any of C's data types. Argument type information is provided in the function header by the parameter list.
For each argument that is passed to the function, the parameter list must contain one entry. This entry specifies the data type and the name of the parameter.

Example: One Parameter
For example, here's the header from the function in Listing 4.1:
long cube(long x)
The parameter list reads long x, specifying that this function takes one type long argument, represented by the parameter x.

Example: More Than One Parameter
If there is more than one parameter, each must be separated by a comma. The function header
void func1(int x, float y, char z)
specifies a function with three arguments: a type int named x, a type float named y, and a type char named z.

Example: No Parameters
Some functions take no arguments, in which case, the parameter list should read void:
void func2(void)

Arguments Versus Parameters
Sometimes confusion arises about the distinction between a parameter and an argument. A parameter is an entry in a function header; it serves as a "place holder" for an argument. A function's parameters are fixed; they do not change during program execution.
An argument is an actual value passed to the function by the calling program. Each time a function is called, it can be passed different arguments. A function must be passed the same number and type of arguments each time it is called, but the argument values can be different. In the function, the argument is accessed by using the corresponding parameter name.

DO use a function name that describes the purpose of the function.
DON'T pass values to a function that it doesn't need.
DON'T try to pass fewer (or more) arguments to a function than there are parameters!

Example Program
An example makes this clearer. Listing 4.2 presents a very simple program with one function that is called twice.
Schematic Representation
Figure 4.4 shows the relationship between arguments and parameters schematically.

	Listing 4.2: Difference Between Arguments and Parameters

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
 27:
	/* LIST0502.c: Listing 4.2 */
/* Illustrates the difference between arguments */
/* and parameters. */

#include <stdio.h>

float x = 3.5F, y = 65.11F, z;
float half_of(float k);

int main(void) {

 /* In this call, x is argument to half_of(). */
 z = half_of(x);
 printf("The value of z = %f\n", z);

 /* In this call, y is argument to half_of(). */
 z = half_of(y);
 printf("The value of z = %f\n", z);
 return 0;
}

float half_of(float k) {
 /* k is the parameter. Each time half_of() */
 /* is called, k has the value that was */
 /* passed as an argument. */
 return (k/2);
}

	Output
	The value of z = 1.750000
The value of z = 32.555000

	Description
	Looking at Listing 4.2, you can see that the function half_of() prototype is declared on line 8.
Lines 13 and 17 call half_of() and lines 22 – 27 contain the actual function. Lines 13 and 17 each send a different argument to half_of(). Line 13 sends x, which contains a value of 3.5, and line 17 sends y, which contains a value of 65.11. When the program runs, it prints the correct number for each.
The values in x and y are passed into the argument k of half_of(). This is like copying the values from x to k, and then y to k. half_of() then returns this value after dividing it by 2 (line 26).

 b- The Function Body

Components
The function body is enclosed in braces and follows immediately after the function header. It's here that the real work is done. When a function is called, execution begins at the start of the function body and terminates (returns to the calling program) when a return statement is encountered or when execution reaches the closing brace.

Local Variables
You can declare variables within the body of a function. Variables declared in a function are called local variables. The term local means the variables are private to that particular function and are distinct from other variables of the same name declared elsewhere in the program. This is explained shortly; for now, you should learn how to declare local variables.
Declaring Local Variables
A local variable is declared like any other variable, using the same variable types and rules for names that you learned on , "Numeric Variables and Constants." Local variables can also be initialized when they are declared. You can declare any of C's variable types in a function.
Example

Here are some examples:
int func1(int y) {
 int a, b = 10;
 float rate;
 double cost = 12.55;
...
}
The preceding declarations create local variables a, b, rate, and cost that can be used by the code in the function. Note that the function parameters are considered to be variable declarations, so the variables, if any, in the function's parameter list are also available.

Local Variables Are Independent
When you declare and use a variable in a function, it is totally separate and distinct from any other variables that are declared elsewhere in the program. This is true even if the variables have the same name. The program in Listing 4.3 demonstrates this independence.
	Listing 4.3: Demonstration of Local Variables

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
	/* LIST0503.c: Listing 4.3 */
/* Demonstrates local variables. */

#include <stdio.h>
/* Declare and initialize two global variables. */
int x = 1, y = 2;

void demo(void);

int main(void) {
 printf("\nBefore calling demo(),"
 "x = %d and y = %d.", x, y);
 demo();
 printf("\nAfter calling demo(),"
 "x = %d and y = %d.", x, y);
 return 0;
}

void demo(void) {
 /* Declare and initialize two local variables.
 * with the same names as the global variables. */
 int x = 88, y = 99;
 /* Display their values. The local variables are displayed.*/
 printf("\nWithin demo(), x = %d and y = %d.",
 x, y);
}

	Output
	Before calling demo(), x = 1 and y = 2.
Within demo(), x = 88 and y = 99.
After calling demo(), x = 1 and y = 2.

	Description
	Listing 4.3 is similar to the previous programs in this unit. Line 6 declares variables x and y. These are declared outside of any functions and therefore are considered global.

Line 8 contains the prototype for our demonstration function, named demo(). It is a function that does not take any parameters, and therefore has void in the prototype. It also does not return any values, giving it a type of void.

Line 10 starts our main() function, which is very simple. First, printf() is called on line 11 to display the values of x and y, and then the demo() function is called.

Notice that demo() declares its own local versions of x and y on line 21. Line 23 shows that the local variables take precedence over any others.

After the demo function is called, line 14 again prints the values of x and y. Because you are no longer in demo(), the original global values are printed.

Rules for Use of Variables in Functions
As you can see in Listing 4.3, local variables x and y in the function are totally independent from the global variables x and y declared outside the function. Three rules govern the use of variables in functions.

· To use a variable in a function, you must declare it in the function header or the function body (except for global variables, which are covered on 2, "Variable Scope").

· For a function to obtain a value from the calling program, the value must be passed as an argument.

· For a calling program to obtain a value from a function, the value must be explicitly returned from the function.

Summary
Keeping the function's variables separate from other program variables is one way in which functions are independent. A function can perform any sort of data manipulation you want, using its own set of local variables. There's no worry that these manipulations have an unintended effect on another part of the program.

Permitted Statements
There is essentially no limitation on the statements that can be included within a function. The only thing you can't do inside a function is define another function. You can, however, use all other C statements, including loops (these are covered on , "Basic Program Control"), if statements, and assignment statements. You can call library functions and other user-defined functions.
Permitted Length
C places no length restriction on functions, however, for practical purposes, keep your functions short. In structured programming, each function is supposed to perform a relatively simple task. If you are trying to perform a task too complex for one function, break it into two or more smaller functions.

How Long Is Too Long?
There's no definite answer to that question, but in practical experience it's rare that you find a function longer than 25 to 30 lines of code. Use your own judgment. Some programming tasks require longer functions, whereas many functions are only a few lines. As you gain programming experience, you will become more adept at determining what should and should not be broken into smaller functions.

return Keyword
To return a value from a function, you use the return keyword, followed by a C expression. When execution reaches a return statement, the expression is evaluated, and execution passes the value back to the calling program. The return value of the function is the value of the expression.
Example
Multiple return Statements
A function can contain multiple return statements. The first return executed is the only one that has any effect. Multiple return statements are an efficient way to return different values from a function. Look at the example in Listing 4.4.

DON'T try to return a value that has a different type than the function's type.
DO use local variables whenever possible.
DON'T let functions get too long. If a function starts getting long, try to break it into separate, smaller tasks.
DO limit each function to a single task.
DON'T have multiple return statements if they are not needed. You should try to have one return when possible; however, sometimes having multiple return statements is easier and clearer.

	Listing 4.4: Using Multiple Return Statements in a Function

	Code 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
 10:
 11:
 12:
 13:
 14:
 15:
 16:
 17:
 18:
 19:
 20:
 21:
 22:
 23:
 24:
 25:
 26:
	/* LIST0504.c: Listing 4.4 */
/* Demonstrates using multiple return */
/* statements in a function. */

#include <stdio.h>

int x, y, z;
int larger_of(int a, int b);

int main(void) {

 puts("Enter two different integer values: ");
 scanf("%d%d", &x, &y);

 z = larger_of(x, y);

 printf("\nThe larger value is %d.", z);
 return 0;
}

 int larger_of(int a, int b) {
 if (a > b)
 return a;
 else
 return b;
}

	Output
	E:\>list0504
Enter two different integer values:
200 300

The larger value is 300.

E:\>list0504
Enter two different integer values:
300
200

The larger value is 300.

	Description
	As in other examples, Listing 4.4 starts with a comment to describe what the program does (lines 1 – 3). The STDIO.H header file is included for the standard input/output functions that allow the program to display information to the screen and get user input.

Line 8 is the function prototype for larger_of(). Notice that it takes two int variables for parameters and returns an int.

Line 15 calls larger_of() with x and y. The function larger_of() has the multiple return statements. Using an if statement, the function checks to see whether a is bigger than b on line 22. If it is, line 23 executes a return statement and the function immediately ends. Lines 24 and 25 are ignored in this case. If a is not bigger than b, line 23 is skipped, the else clause is instigated, and the return on line 25 executes.

You should be able to see that, depending on the arguments passed to the function larger_of(), either the first or the second return statement is executed, and the appropriate value is passed back to the calling function.

One final note on this program. Line 12 is a new function that you have not seen before. puts()—read put string—is a simple function that displays a string to the standard output, usually the computer screen. (Strings are covered on 0, "Characters and Strings"; for now, know that they are just quoted text).

Remember that a function's return value has a type that is specified in the function header and function prototype. The value returned by the function must be of the same type or the compiler generates an error message.

Look at this function:
int func1(int var)
{
 int x;
 ...
 ...
 return x;
}
When this function is called, the statements in the function body execute up to the return statement. The return terminates the function and returns the value of x to the calling program. The expression that follows the return keyword can be any valid C expression.
4.3: Calling Functions

Discarding the Return Value
There are two ways to call a function. Any function can be called by simply using its name and argument list alone in a statement. If the function has a return value, it is discarded. For example, wait(12);

Using the Return Value
The second method can be used only with functions that have a return value. Because these functions evaluate to a value (that is, their return value), they are valid C expressions and can be used anywhere a C expression can be used. If you try to use a function with a void return type as an expression, the compiler generates an error message.
You've already seen an expression with a return value used as the right side of an assignment statement. Here are some other examples.

DO pass parameters to functions in order to make the function generic and thus reusable!
DO take advantage of the ability to put functions into expressions.
DON'T make an individual statement confusing by putting a bunch of functions in it. Only put functions into your statements if they don't make the code more confusing.

printf("Half of %d is %d.", x, half_of(x));
In this example, half_of() is a parameter of a function. First, the function half_of() is called with the value of x, and then printf() is called using the values x and half_of(x).

y = half_of(x) + half_of(z);
For this second example, multiple functions are being used in an expression. Although half_of() is used twice, the second call could have been any other function. The following code shows the same statement, but not all on one line.
a = half_of(x);
b = half_of(z);
y = a + b;

The final two examples show effective ways to use the return values of functions:
if (half_of(x) > 10) {
 /* Any statement can go here. */
 statement(s)
}
Here a function is being used with the if statement. If the return value of the function meets the criteria (in this case, if half_of() returns a value greater than 10), the if statement is true, and its statements are executed. If the returned value does not meet the criteria, the if's statements are not executed. The next example is even better.

if (do_a_process() != OKAY) {
 statements /* do error routine */
}
Again, you don't see the actual statements, nor is do_a_process() a real function; however, this is an important example that checks the return value of a process to see whether it did not run all right. If it didn't, the statements take care of any error handling or cleanup. This is used commonly with accessing information in files, comparing values, and allocating memory.
4.4: Q&A

Questions & Answers
Here are some questions to help you review what you have learned in this unit.

Question 1
Does main() have to be the first function in a program?
Answer
No. It is a standard in C that the main() function is the first function to execute; however, it can be placed anywhere in your source file. Most people place it first so that it is easy to locate.
Question 2
How do I know what a good function name is?
Answer
A good function name describes as specifically as possible what the function does.

4.5: Summary

What a Function Is
This unit section introduced you to functions, an important part of C programming. Functions are independent sections of code that perform specific tasks. When your program needs a task performed, it calls the function that performs that task.
Advantages of Structured Programming with Functions
The use of functions is essential for structured programming—a method of program design that emphasizes a modular, top-down approach. Structured programming creates more efficient programs and also is much easier for you, the programmer, to use.
The header includes information about the function's return type, name, and parameters. The body contains local variable declarations and the C statements that are executed when the function is called.
Independence of Local Variables
Finally, you saw that local variables—those declared within a function—are totally independent from any other program variables declared elsewhere.
Now you have enough basic knowledge of programming in C to tackle the first assignment which is now available on blackboard.
