DIMENSIONAL ANALYSIS

Dimensional analysis depends upon the fundamental principle that any equation or relation
between variables must be dimensionally consistent’, that is, each term in the relationship
must have the same dimensions. Thus, in the simple application of the principle, an equation
may consist of a number of terms, each representing, and therefore having, the dimensions of
length. It is not permissible to add, say, lengths and velocities in an algebraic equation because
they are quantities of different characters. The corollary of this principle is that if the whole
equation is divided through by any one of the terms, each remaining term in the equation must
be dimensionless. The use of these dimensionless groups, or dimensionless numbers as they
are called, is of considerable value in developing relationships in chemical engineering. The
requirement of dimensional consistency places a number of constraints on the form of the
functional relation between variables in a problem and forms the basis of the technique of
dimensional analysis which enables the variables in a problem to be grouped into the form of
dimensionless groups. Since the dimensions of the physical quantities may be expressed in
terms of a number of fundamentals, usually mass, length, and time, and sometimes temperature
and thermal energy, the requirement of dimensional consistency must be satisfied in respect of
each of the fundamentals. Dimensional analysis gives no information about the form of the
functions, nor does it provide any means of evaluating numerical proportionality constants.
The study of problems in fluid dynamics and in heat transfer is made difficult by the

many parameters which appear to affect them. In most instances further study shows that

the variables may be grouped together in dimensionless groups, thus reducing the effective
number of variables. It is rarely possible, and certainly time consuming, to try to vary

these many variables separately, and the method of dimensional analysis in providing a
smaller number of independent groups is most helpful to the investigated.

The application of the principles of dimensional analysis may best be understood by

considering an example.

Exercises:



PROBLEM 1.1

98% sulphuric acid of viscosity 0.025 N s/m? and density 1840 kg/m3 is pumped at
685 cm?/s through a 25 mm line. Calculate the value of the Reynolds number.

Solution

Cross-sectional area of line = (11/4)0.025% = 0.00049 m?.

Mean velocity of acid, u = (685 x 107°)/0.00049 = 1.398 m/s.
.. Reynolds number, Re = dup/p = (0.025 x 1.398 x 1840)/0.025 = 2572

The power required by an agitator in a tank is a function of the following four variables:

(a) diameter of impeller,

(b) number of rotations of the impeller per unit time,
(c) viscosity of liquid,

(d) density of liquid.

From a dimensional analysis, obtain a relation between the power and the four variables.

The power consumption is found, experimentally, to be proportional to the square of
the speed of rotation. By what factor would the power be expected to increase if the
impeller diameter were doubled?

Solution

If the power P = ¢ (DN ppe), then a typical form of the function is P = kDAN? p¢ i where
k is a constant. The dimensions of each parameter in terms of M, L, and T are: power,
P = NILQ/T3, density, p = 1\/1/L3, diameter, ) = L, viscosity, &+ = M/LT, and speed of
rotation, N = T—!

Equating dimensions:

M: 1 =c+d
L: 2=a—3c—d
T: —3=—b—d

Solving interms of d :a=(5—2d). b =3 —d).c = (1 —d)

D> N3 p
P = 7'(7'( d
D24 Nd pd
or: P/DN3p = k(D>Np/p)—4
that is: Np = k Re™



Thus the power number is a function of the Reynolds number to the power m. In
fact Np is also a function of the Froude number, DN?2/g. The previous equation may be
written as:

P/DN3p = k(D>Np/p)”
Experimentally: P o N?

From the equation, PocN"N3 thatism+3 =2 and m = —1
Thus for the same fluid, that is the same viscosity and density:
(P2/PIDINT/DIN3) = (DIN1/D3N2) " or: (P2/P1) = (N3D3)/(NTD})
In this case, Ny = N> and D, = 2D;.
(P2/P1) =8D7/D} =8
A similar solution may be obtained using the Recurring Set method as follows:
P=¢D . N,.p. ), f(P.D.N,p.u) =0

Using M, L and T as fundamentals, there are five variables and three fundamentals
and therefore by Buckingham’s 77 theorem, there will be two dimensionless groups.
Choosing D, N and p as the recurring set, dimensionally:

D=L L=D
N =T-! ] Thus: {TN—]

p = ML™? M = pL3 = pD?
[_)
First croup. mq. is P(ML2T-3)"! = p(pD3?D2N3H)~1 =
group, 7 ( ) (r ) DN
Second group, 7, is f(ML™'T-"1)"1 = j(pD3D-IN) 1 = H
pPD2ZN
P I
Thus: f{l————.—— ) =0
pPIDAN3" pD?N

Although there is little to be gained by using this method for simple problems. there is
considerable advantage when a large number of groups is involved.

It is found experimentally that the terminal settling velocity ug of a spherical particle in
a fluid is a function of the following quantities:

particle diameter, d; buoyant weight of particle (weight of particle — weight of displaced
fluid), W; fluid density, p, and fluid viscosity, wu.

Obtain a relationship for ug using dimensional analysis.
Stokes established, from theoretical considerations, that for small particles which settle
at very low velocities, the settling velocity is independent of the density of the fluid



except in so far as this affects the buoyancy. Show that the settling velocity must then be
inversely proportional to the viscosity of the fluid.

Solution

If: g = kd®*W?p° . then working in dimensions of M, L and T:
(L/T) = k(L(ML/T?)? (M/L*)e (M/LT)9)
Equating dimensions:

M: O=b+c+d
L: |l =a+b—3¢c—d
T: —1=-2b—d

Solving in terms of b:

a=—1l,c=(b—1), andd = (1 — 2b)
ug = k(1/d)( Wb)(pb/p)(,u/,uz‘f’) where k is a constant,
or: 1y = k(,u/dp)(Wp/,uQ)"’
Rearranging:

(dugp/ ) = k(Wp/,u.z)‘r’
where (W p/ue?) is a function of a form of the Reynolds number.

For up to be independent of p, b must equal unity and up = kW /d

Thus, for constant diameter and hence buoyant weight. the settling velocity is inversely
proportional to the fluid viscosity.



