Heat Transfer

In the majority of chemical processes heat is either given out or absorbed, and fluids must
often be either heated or cooled in a wide range of plant, such as furnaces, evaporators,
distillation units, dryers, and reaction vessels where one of the major problems is that

of transferring heat at the desired rate. In addition, it may be necessary to prevent the

loss of heat from a hot vessel or pipe system. The control of the flow of heat at the
desired rate forms one of the most important areas of chemical engineering. Provided
that a temperature difference exists between two parts of a system, heat transfer will take
place in one or more of three different ways.

Conduction. In a solid, the flow of heat by conduction is the result of the transfer of
vibrational energy from one molecule to another, and in fluids it occurs in addition as a
result of the transfer of kinetic energy. Heat transfer by conduction may also arise from
the movement of free electrons, a process which is particularly important with metals and
accounts for their high thermal conductivities.

Convection. Heat transfer by convection arises from the mixing of elements of fluid.

If this mixing occurs as a result of density differences as, for example, when a pool of
liquid is heated from below, the process is known as natural convection. If the mixing
results from eddy movement in the fluid, for example when a fluid flows through a pipe
heated on the outside, it is called forced convection. It is important to note that convection
requires mixing of fluid elements, and is not governed by temperature difference alone as
is the case in conduction and radiation.

Radiation. All materials radiate thermal energy in the form of electromagnetic waves.
When this radiation falls on a second body it may be partially reflected, transmitted, or

absorbed. It is only the fraction that is absorbed that appears as heat in the body.

BASIC CONSIDERATIONS
Individual and overall coefficients of heat transfer

In many of the applications of heat transfer in process plants, one or more of the

mechanisms of heat transfer may be involved. In the majority of heat exchangers heat

passes through a series of different intervening layers before reaching the second fluid. These
layers may be of different thicknesses and of different thermal conductivities.

The problem of transferring heat to crude oil in the primary furnace before it enters

the first distillation column may be considered as an example. The heat from the flames

passes by radiation and convection to the pipes in the furnace, by conduction through the
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Heat transfer through a composite wall

pipe walls, and by forced convection from the inside of the pipe to the oil. Here all three
modes of transfer are involved. After prolonged usage, solid deposits may form on both
the inner and outer walls of the pipes, and these will then contribute additional resistance
to the transfer of heat. The simplest form of equation which represents this heat transfer

operation may be written as:

where Q is the heat transferred per unit time, A the area available for the flow of heat,
AT the difference in temperature between the flame and the boiling oil, and U is known
as the overall heat transfer coefficient (W/m2 K in Sl units).

At first sight, equation 1 .implies that the relationship between Q and AT is linear.
Whereas this is approximately so over limited ranges of temperature difference for which
U is nearly constant, in practice U may well be influenced both by the temperature
difference and by the absolute value of the temperatures.

If it is required to know the area needed for the transfer of heat at a specified rate,

the temperature difference AT, and the value of the overall heat-transfer coefficient must
be known. Thus the calculation of the value of U is a key requirement in any design
problem in which heating or cooling is involved. A large part of the study of heat transfer
is therefore devoted to the evaluation of this coefficient.

The value of the coefficient will depend on the mechanism by which heat is transferred,

on the fluid dynamics of both the heated and the cooled fluids, on the properties of the



materials through which the heat must pass, and on the geometry of the fluid paths. In
solids, heat is normally transferred by conduction; some materials such as metals have
a high thermal conductivity, whilst others such as ceramics have a low conductivity.
Transparent solids like glass also transmit radiant energy particularly in the visible part
of the spectrum.

Liquids also transmit heat readily by conduction, though circulating currents are
frequently set up and the resulting convective transfer may be considerably greater than
the transfer by conduction. Many liquids also transmit radiant energy. Gases are poor
conductors of heat and circulating currents are difficult to suppress; convection is therefore
much more important than conduction in a gas. Radiant energy is transmitted with only
limited absorption in gases and, of course, without any absorption in vacua. Radiation
is the only mode of heat transfer which does not require the presence of an intervening

medium.

If the heat is being transmitted through a number of media in series, the overall heat
transfer coefficient may be broken down into individual coefficients h each relating to a
single medium. This is as shown in Figure 9.1. It is assumed that there is good contact
between each pair of elements so that the temperature is the same on the two sides of

each junction.

If heat is being transferred through three media, each of area A, and individual coefficients
for each of the media are hy, ho, and hs, and the corresponding temperature

changes are ATy, ATz, and ATz then, provided that there is no accumulation of heat

in the media, the heat transfer rate Q will be the same through each. Three equations.

analogous to equation 1, can therefore be written as:
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From equation 9.1: AT = = —

Comparing equations 9.4 and 9.5:

The reciprocals of the heat transfer coefficients are resistances, and equation 9.6

therefore illustrates that the resistances are additive.

In some cases, particularly for the radial flow of heat through a thick pipe wall or
cylinder, the area for heat transfer is a function of position. Thus the area for wansfer
applicable to each of the three media could differ and may be A;, A> and A3. Equation 9.3
then becomes:
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Equation 9.7 must then be written in terms of one of the area terms A,, A,, and Az, or
sometimes in terms of a mean area. Since  and AT must be independent of the particular

area considered, the value of U will vary according to which area is used as the basis.
Thus equation 9.7 may be written, for example:

: : 0
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This will then give U, as:
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9.2.2. Mean temperature difference

Where heat is being transferred from one fluid to a second fluid through the wall of a
vessel and the temperature is the same throughout the bulk of each of the fluids, there is no
difficulty in specifying the overall temperature difference AT. Frequently, however, each
fluid is flowing through a heat exchanger such as a pipe or a series of pipes in parallel,
and its temperature changes as it flows, and consequently the temperature difference
is continuously changing. If the two fluids are flowing in the same direction (co-current
flow), the temperatures of the two streams progressively approach one another as shown in
Figure 9.2. In these circumstances the outlet temperature of the heating fluid must always
be higher than that of the cooling fluid. If the fluids are flowing in opposite directions
(countercurrent flow), the temperature difference will show less variation throughout the
heat exchanger as shown in Figure 9.3. In this case it is possible for the cooling liquid to
leave at a higher temperature than the heating liquid, and one of the great advantages of
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Figure 9.2. Mean temperature difference for co-current flow
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Figure 3. Mean temperature difference for countercurrent flow



countercurrent flow is that it is possible to extract a higher proportion of the heat content
of the heating fluid. The calculation of the appropriate value of the temperature difference
for co-current and for countercurrent flow is now considered. It is assumed that the overall
heat transfer coefficient / remains constant throughout the heat exchanger.

It is necessary to find the average value of the temperature difference 6,, to be used in

the general equation:
0 = UAG,

(equation 9.1)

Figure 9.3 shows the temperature conditions for the fluids flowing in opposite direc-

tions, a condition known as countercurrent flow.

The outside stream specific heat Cp; and mass flow rate G, falls in temperature from

T to T|2.

The inside stream specific heat C,» and mass flow rate G, rises in temperature from

Tgl [(8] ng.

Over a small element of area dA where the temperatures of the streams are 7 and 7.

The temperature difference:
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where ,, is known as the logarithmic mean temperature difference.

and:

(9.9)

UNDERWOOD'" proposed the following approximation for the logarithmic mean

temperature difference:
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)
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Example

A heat exchanger is required to cool 20 kg/s of water from 360 K to 340 K by means of 25 kg/s water entering
at 300 K. If the overall coefficient of heat transfer is constant at 2 kW/m?K, calculate the surface area required
in {a) a countercurrent concentric tube exchanger, and (b) a co-current flow concentric tube exchanger.

Solution
Heat load: @ = 20 x 4.18(360 — 340) = 1672 kW
The cooling water outlet temperature is given by:
1672 =25 x 4.18(F; — 300) or f=316K

{a) Counterflow

In equation 9.9: By = —In(M_-jdﬂ] =419K
, 0
Heat transfer area: A= ———
Uy
1672
T 2x41.9

= 19.95 m?

(hy Co-current flow

. 60 -- 24
In equation 9.9: [ — m =393 K
1672
A= —
2 393

=21.27 m?

Heat transfer area:

360 Countercurrent flow Co-current flow

44 340 360

L .

—.

116 40 60 24

316

300 300
8, = 419K 8, = 39.3K

Figure 9.4, Data for Example 9.1



9.3. HEAT TRANSFER BY CONDUCTION
9.3.1. Conduction through a plane wall

This important mechanism of heat transfer is now considered in more detail for the flow
of heat through a plane wall of thickness x as shown in Figure 9.5.

Figure 9.5. Conduction of heat through a plane wall

The rate of heat flow Q over the area A and a small distance dx may be written as:
dT
9= 4 [ &L 9.11)
d ( dx ) f
which is often known as Fourier’'s equation, where the negative sign indicates that the
temperature gradient is in the opposite direction to the flow of heat and £ is the thermal
conductivity of the material. Integrating for a wall of thickness x with boundary temper-
atures 7 and T, as shown in Figure 9.5:
KA(T | — T
0= kA, — 1) (9.12)
X
Thermal conductivity is a function of temperature and experimental data may often be
expressed by a linear relationship of the form:

where k is the thermal conductivity at the temperature 7 and ky and &' are constants.
Combining equations 9.11 and 9.13:

dx
—kdT = —ko(1 + K'T)AT = QT

Integrating between the temperature limits 7 and T,

T2 T +T 2 dx
- de:(T;—TQ)kD{l+k'(—-l+ 3)}:(2 — (9.14)
T 2 “ A

Where £ is a linear function of 7', the following equation may therefore be used:
%2 d;
ki -m=0 [ 9.15)
0 A
where k, is the arithmetic mean of k; and k> at 7 and T, respectively or the thermal

conductivity at the arithmetic mean of 7'} and 7.
Where & is a non-linear function of 7, some mean value, k,, will apply, where:

I "2
P f kdT (9.16)
To—T) )y



It is convenient to rearrange equation 9.12 to give:

where x/k is known as the thermal resistance and k/x is the transfer coefficient.

9.3.2. Thermal resistances in series

It has been noted earlier that thermal resistances may be added together for the case of
heat transfer through a complete section formed from different media in series.

Figure 9.6 shows a composite wall made up of three materials with thermal conduc-
tivities ky, k, and ks, with thicknesses as shown and with the temperatures 7'y, T, T3,
and T4 at the faces. Applying equation 9.12 to each section in turn, and noting that the
same quantity of heat 0 must pass through each area A:

Xy X2 X3
T —Try=—0Q, To~Ty = — d T —Tsy=—
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Y. X1 X2 X3 )
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Figure 9.6. Conduction of heat through a composite wall

T, —Ta

or: 0= —E(_xi/klfi)

Total driving force

= : — (9.19
Total (thermal resistance/area) l )



A furnace is constructed with 0.20 m of firebrick, 0.10 m of insulating brick, and 0.20 m of building brick.
The inside temperature is 1200 K and the outside temperature is 330 K. If the thermal conductivities are as
shown in Figure 9.7, estimate the heat loss per unit area and the temperature at the junction of the firebrick
and the insulating brick.

1200 K 330K

Fire brick
x=020m

Figure 9.7. Data for Example 9.3

Solution

From equation 9.19:

0.20 0.10 0.20
0= <120t1-33m/ KM x ]) + (fm x 1) " (u.? x 1)]

B 870 _ 87
T (0143 +0.476 + 0.286) ~ 0.905
= 961 W/m?

The ratio (Temperature drop over firebrick)/(Total temperature drop) = (0.143/0.905)

870 x 0.143

=13
0,905 ) 137 deg K

Temperature drop over firebrick = (

Hence the temperature at the firebrick-insulating brick interface = (1200 — 137) = 1063 K

10



9.3.3. Conduction through a thick-walled tube

The conditions for heat flow through a thick-walled tube when the temperatures on the
inside and outside are held constant are shown in Figure 9.8. Here the area for heat flow

is proportional to the radius and hence the temperature gradient is inversely proportional
to the radius.

Figure 9.8. Conduction through thick-walled tube or spherical shell
The heat flow at any radius r is given by:

dr
Q= —k2mrl (9.20)
r

where [/ is the length of tube.
Integrating between the limits r| and r:

g T
o / &= onik dr
Sy L L
2Ik(Ty — T>)

: = 921
or Q In(ra/r) ®.21)

This equation may be put into the form of equation 9.12 to give:
ktzﬂ-rm'{)(ri - TZ]
0= i ~

F2 — N

{(9.22)

where r, = (r2 — )/ In(r2/ry). is known as the logarithmic mean radius. For thin-walled
tubes the arithmetic mean radius r, may be used, giving:

k(2mar,i T, — T4)
O = krral Ty — T2) (9.23)
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9.4. HEAT TRANSFER BY CONVECTION
9.4.1. Natural and forced convection

Heat transfer by convection occurs as a result of the movement of fluid on a macroscopic
scale in the form of eddies or circulating currents. If the currents arise from the heat
transfer process itself, natural convection occurs, such as in the heating of a vessel
containing liquid by means of a heat source situated beneath it. The liquid at the bottom
of the vessel becomes heated and expands and rises because its density has become less
than that of the remaining liquid. Cold liquid of higher density takes its place and a
circulating current is thus set up.

In forced convection, circulating currents are produced by an external agency such as
an agitator in a reaction vessel or as a result of turbulent flow in a pipe. In general,
the magnitude of the circulation in forced convection is greater, and higher rates of heat
transfer are obtained than in natural convection.

In most cases where convective heat transfer is taking place from a surface to a fluid,
the circulating currents die out in the immediate vicinity of the surface and a film of fluid,
free of turbulence, covers the surface. In this film, heat transfer is by thermal conduction
and, as the thermal conductivity of most fluids is low, the main resistance to transfer
lies there. Thus an increase in the velocity of the fluid over the surface gives rise to
improved heat transfer mainly because the thickness of the film is reduced. As a guide,
the film coefficient increases as (fluid velocity)”, where 0.6 < n < 0.8, depending upon
the geometry.

If the resistance to transfer is regarded as lying within the film covering the surface,
the rate of heat transfer Q is given by equation 9.11 as:

(T —=T3)

Q=kA

The effective thickness x is not generally known and therefore the equation is usually
rewritten in the form:

O =hA(T, - T>) (9.54)

where h is the heat transfer coefficient for the film and (1/k) is the thermal resistance.
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9.4.2. Application of dimensional analysis to convection

So many factors influence the value of 4 that it is almost impossible to determine their
individual etfects by direct experimental methods. By arranging the variables in a series
of dimensionless groups, however, the problem is made more manageable in that the
number of groups is significantly less than the number of parameters. It is found that the
heat transfer rate per unit area ¢ is dependent on those physical properties which affect
flow pattern (viscosity p and density p), the thermal properties of the fluid (the specific
heat capacity C, and the thermal conductivity k) a linear dimension of the surface /, the
velocity of flow u of the fluid over the surface, the temperature difference AT and a
factor determining the natural circulation effect caused by the expansion of the fluid on
heating (the product of the coefficient of cubical expansion B and the acceleration due to
gravity g). Writing this as a functional relationship:

g =0l pp. Cp AT. Bg. k] (9.55)

Noting the dimensions of the variables in terms of length L, mass M, time T, temperature
8, heat H:

g Heat transferred/unit area and unit time HL 2T

1 Velocity LT

l Linear dimension L

i Viscosity ML-'T!

P Density ML

k Thermal conductivity HT 'L~
C, Specific heat capacity at constant pressure HM 9!
AT Temperature difference e

(Bg) The product of the coefficient of thermal expansion
and the acceleration due to gravity LT%0"!

It may be noted that both temperature and heat are taken as fundamental units as heat
is not expressed here in terms of M, L, T.

With nine parameters and five dimensions, equation 9.55 may be rearranged in four
dimensionless groups.

Using the IT-theorem for solution of the equation, and taking as the recurring set:
l.p.p, AT k

The non-recurring variables are: g, u, (Bg), C,
Then:
li = L 4 =
p =ML M = pL? = pI°
=ML IT! T=ML "y =pP1 'yt = pitp-!
AT =6 8 = AT
k=HL'T"'9"! H = kLT0 = kipl? ' AT = kP pp ™' AT

13



The I groups are then:

M =qgH LT =gk "1 30 ' uAT '"PplPu " =gk "IAT!
M =ul™'"T=ul"pl*u' = uplp"

My = C,H 'M8 = Cpk '/ p T uAT TP AT = Cpk 't
My = AL 'T°0 = Bl ' p*1* ) P AT = BgATp’p 1

The relation in equation 9.55 becomes:

gl _h _ [(lup (CP” ﬁg’j‘ﬂjpz) (9.56)
kAT &k " k e B
or: Nu = ¢[Re, Pr, Gr]

This general equation involves the use of four dimensionless groups, although it may
trequently be simplified for design purposes. In equation 9.56:
hijk is known as the Nusselr group Nu (already referred to in equation 9.46),
lup/ i the Reynolds group Re,
Copfk the Prandtl group Pr, and
BeATIPp*/u”  the Grashof group Gr

It is convenient to define other dimensionless groups which are also used in the analysis
of heat transfer. These are:

lupCp/k the Peclet group, Pe = RePr,
GCp/ki the Graetz group Gz, and
h/Cppu the Stanton group, St = Nu/(RePr)

It may be noted that many of these dimensionless groups are ratios. For example, the
Nusselt group i/(k/1) is the ratio of the actual heat transfer to that by conduction over a
thickness [, whilst the Prandtl group, (u/p)/(k/C,p) is the ratio of the kinematic viscosity
to the thermal diffusivity.

For conditions in which only natural convection occurs, the velocity is dependent on
the buoyancy effects alone, represented by the Grashof number, and the Reynolds group
may be omitted. Again, when forced convection occurs the effects of natural convection
are usually negligible and the Grashof number may be omitted. Thus:

for natural convection: Nu = f(Gr, Pr) (9.57)

and for forced convection: Nu = f(Re. Pr) (9.58)

For most gases over a wide range of temperature and pressure, C,u/k is constant
and the Prandtl group may often be omitted, simplifying the design equations for the
calculation of film coefficients with gases.
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9.5. HEAT TRANSFER BY RADIATION
9.5.1. introduction

It has been seen that heat transfer by conduction takes place through either a solid or a
stationary fluid and heat transfer by convection takes place as a result of either forced or
natural movement of a hot fluid. The third mechanism of heat transfer, radiation, can take
place without either a solid or a fluid being present, that is through a vacuum, although
many fluids are transparent to radiation, and it is generally assumed that the emission of
thermal radiation is by “waves” of wavelengths in the range 0.1-100 gm which travel in
straight lines. This means that direct radiation transfer, which is the result of an interchange
between various radiating bodies or surfaces, will take place only if a straight line can
be drawn between the two surfaces; a situation which is often expressed in terms of
one surface “seeing” another. Having said this, it should be noted that opaque surfaces
sometimes cast shadows which inhibit radiation exchange and that indirect transfer by
radiation can take place as a result of partial reflection from other surfaces. Although all
bodies at temperatures in excess of absolute zero radiate energy in all directions, radiation
is of especial importance from bodies at high temperatures such as those encountered in
furnaces, boilers and high temperature reactors, where in addition to radiation from hot
surfaces, radiation from reacting flame gases may also be a consideration.
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9.5.2. Radiation from a black body

In thermal radiation. a so-called black body absorbs all the radiation falling upon it, regard-
less of wavelength and direction, and. for a given temmperature and wavwvelength, no surface
can emit more energy than a black body. The radiation emitted by a black body, whilst a
function of wavelength and temperature, is regarded as Jdiffiese, that is, it is independent of
direction. In general. most rough surfaces and indeed most engineering materials may be
regarded as being diffuse. A black body, because it is a perfect emitter or absorber, provides
a standard against which the radiation properties of real surfaces may be compared.

It the emissive power E of a radiation source—that is the energy emitted per unit area
per unit time —is expressed in terms of the radiation of a single wavelength 5. then this
is known as the rmonochromatic or spectral emissive power ,, defined as that rate at
which radiation of a particular wawvelength A is emitted per unit surface area, per unit
wavelength in all directioms. For a black body at temperature T, the spectral emissive
power of a wavelength A is given by Planck’ s Distriburion Law :

Ej = € /2% (exp(Ca/AT)Y — 13} (9. 108)

where. in SI units, &5 ;5 is in W/m> and €| = 3.742 < 107" W/m~® and > = 1.439 =
107 % mK are the respective radiation constants. Equation 9.108 permits the evaluation of
the emissive power from a black body for a given wawvelength and absolure temperature
and walues obtained from the eqguation are plotted in Figure 9.33 wwhich is based on
the work of INCROPERA and DE WITT™ | It may be noted that, at a given wavelength,
the radiation from a black body increases with temperature and that, in general. short
wavelengths are associated with high temperature sources.

Example 9.12

What is the temperature of a surface coated with carbon black if the emissive power at a wavelengih of
1.0 = 107" m is 1.0 = 107 Wsm?? How would this be affected by a +2 per cent error in the emissive power
ENTE ST TR

Solution

Froomm eguation 9 108 exp(Ca2 AT )y = [C‘1_,-"EA_;,}‘5} + 1]

or: expll 439 « 107 2,/01.0 = 1079773 = [3.742 = 107 '9/01 = 1077 = (1.0 = 107%3%)3]
= 3742 = 1

Thus: (1.439 > 10%)/7T = In(3.742 = 107) = 12.83

ancd: T = (1439 x 1073/12. 83 = 1121 K

With an error of 42 per cenrt. the correct value is given by:

Ejp o= (100 — 231 = 10%)3/ 100 = 9.8 »x 105 Wim"

In eguation 9. 108&: 98 = 108 — (3 742 = LOT 1By [(1 » 1O 935
(exp(l 439 x 1072,/401.0 = 10773 — 1]
and: = 1120 K

Thus. the error in the calculated temperature of the surface is only 1 K.

The wavelength at which maximum emission takes place is related to the absolute

temperature by Wein's Displacement Law, which states that the wavelength for maximum
emission varies inversely with the absolute temperature of the source, or:

Amar T = constant, Cy(= 2.898 x 107* mK in SI units) (9.109)
Thus, combining equations 9.108 and 9.109:
Emas = C1/ [(C3/TY[exp(C2/C3) — 1]]
or Espmarp = C4T* (9.110)

where, in SI units, the fourth radiation constant, C4 = 12.86 x 107 W/m® K’. Values of
the maximum emissive power are shown by the broken line in Figure 9.33.
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The total emissive power E is defined as the rate at which radiation energy is emitted per
unit time per unit area of surface over all wavelengths and in all directions. This may be
determined by making a summation of all the radiation at all wavelengths, that is by deter-
mining the area corresponding to a particular temperature under the Planck distribution
curve, Figure 9.33. In this way. from equation 9.108, the total emissive power is given hy:

oo
E, = [ Cy di/[2 (exp(Ca/2T) = 1] (9.111)
J10

which is known as the Stefan-Boltzmann Law. This may be integrated for any constant
value of T to give:
E, =oT? {(9.112)

where, in SI units, the Stefan-Boltzmann constant & = 5.67 x 10~% W/m? K?,

Example 9.13

Electrically-heated carbide elements, 10 mm in diameter and 0.5 m long, radiating essentially as black bodies,
are to be used in the construction of a heater in which thermal radiation from the surroundings is negligible.
if the surface temperature of the carbide is limited to 1750 K, how many elements are required to provide a
radiated thermal ourput of 500 kW?

Solution
From equation 9.112, the total emissive power is given by:
Ep =aT* = (567 x 107% x 1750%) = 5.32 x 10° W/m?

The area of one element = x(10/1000)0.5 = 1.571 x 107% m’

and: Power dissipated by one element = (5.32 x 10° x 1.571 x 107%) = 8367 x 10° W
Thus: Number of elements required = (500 x 1000)/(8.357 x 107} = 59.8 say 60

9.5.3. Radiation from real surfaces

The emissivity of a material is defined as the ratio of the radiation per unit area emitted
from a “real” or from a grey surface (one for which the emissitivity is independent of
wavelength) to that emitted by a black body at the same temperature. Emissivities of
“real” materials are always less than unity and they depend on the type, condition and
roughness of the material, and possibly on the wavelength and direction of the emitted
radiation as well. For diffuse surfaces where emissivities are independent of direction, the
emissivity, which represents an average over all directions, is known as the hemispherical
emissivity. For a particular wavelength A this is given by:

L= tE;_Ep; {Q]l:’#)
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and, similarly, the total hemispherical emissivity. an average over all wavelengths. is
given by:
e=FE/E, (9.114)

Equation 9.114 leads to Kirchoff’s Law which states that the absorptivity, or fraction
of incident radiation absorbed, and the emissivity of a surface are equal. If two bodies A
and B of areas A, and A; are in a large enclosure from which no energy is lost, then the
energy absorbed by A from the enclosure is Aja,/ where [ is the rate at which energy is
falling on unit area of A and a, is the absorptivity. The energy given out by A is E A,
and, at equilibrium, these two quantities will be equal or:

TA;a, =AE,
and, for B: ngag = A’_?Eg
Thus: E\/a, = E,/a; = E/a for any other body.

Since E/a = E,/ay, then, from equation 9.114:
e=FE/E, =a/a,
and, as by definition, a;, = I, the emissivity of any body is equal to its absorptivity, or:

P (9.115)
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