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PREFACE 

Electromagnetics in theory and practice constitute the most basic principles 

underlying all the various aspects of electrical, electronics and computer 

technologies in modern times. 

The foundation of electromagnetic phenomena dates back some two to three 

hundred years ago with the discovery of the forces of interaction between 

electrical charges, whether stationary or in motion, the principle of the 

production of magnetism from steady electrical currents, or of electricity by 

means of changing magnetic fields. 

Three major epochs of applications based on these phenomena could be 

identified. First, is the commercial production of electrical motors and 

generators, electrical heating and lighting, voltaic cells (batteries), telegraphs 

and telephones. Second, is the ability to communicate instantly at long 

distances by wireless electromagnetic means, producing voice, images and 

data technologies in broadcasting and telecommunications, in the last 100 to 

150 years. The ability to manipulate individual electrons and atoms to 

generate, amplify and detect electromagnetic signals by means of electronic 

devices of the vacuum tubes, diodes, transistors, integrated circuits (ICs) and 
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optical devices and lasers are all technologies based on the principles of 

electromagnetics. 

The third phase, which is within the last fifty years involves informatics or 

information communication technologies (ICT), which, essentially, is the 

manipulation of electrical signals, whether analogue or digital, to produce 

new classes of functionality in optimum signal processing, computers, 

mechatronics, robotics and artificial intelligence. 

All of the above technologies lead, with the passage of time and advancing 

frontiers of knowledge, into modern state-of-the-art applications of the 

cellular mobile (GSM), terrestrial and satellite communications, renewable 

energy resources, internet facilities, radio navigation systems, space 

exploration and travels, guided missiles of modern warfare and myriads of 

biomedical applications in health-care delivery, etc. The list is inexhaustive. 

The building blocks of all these edifices rely entirely on the basic principles of 

electromagnetics in all ramifications. It is, therefore, imperative that a 

competent and confident electrical, electronics or computer engineer of the 

future is well advised to pay serious attention to the fundamental principles of 

electromagnetics and applications outlined in this book. 
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 ELECTROSTATICS 

1.1   INTRODUCTION 

Experimental evidences by notable scientists such as Coulomb, Gauss, 

Ampere and Faraday have shown that electric and magnetic interactions are 

intimately connected. In fact, all magnetic effects are, in the final analysis, 

electrical in nature. 

James Clerk Maxwell (1831-1879) developed some basic equations, known as 

Maxwell’s equations, which unify the principles of electromagnetic effects, 

based on the various empirical relations of previous workers.  Maxwell’s 

equations represent a synthesis of electromagnetic fields, which led to the 

discovery of electromagnetic waves, and that light is electromagnetic in 

nature, with a constant velocity in vacuum,   
 

√    
 , where   ,    are the 

permeability and permittivity of vacuum or air.  

Long before the discovery of electricity, human beings have observed several 

electrostatic and electricity phenomena within their environment. In electric 

eel fish for example, some 5,000 to 6,000 stacked electroplaques embedded in 

their nervous system are capable of producing about 860 volts and 1 ampere 

of current for a few milliseconds. Another naturally occurring electricity 
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phenomenon is the lightning discharge where interaction between electrically 

charged regions of a cloud causes a discharge of current as high as several 

tens of thousands of amperes. 

Early scientists therefore began to invest concerted efforts in the quest of 

reproducing these observed phenomena for the advancement of knowledge as 

well as for the improvement of the standard of living of mankind. One of such 

efforts, particularly in electrostatics, is that which led to the popular 

Coulomb’s law.  

The study of static and moving charged particles is critical for the 

understanding of several electromagnetic phenomena as the movement or 

storage of electric charges remains the basis on which the development of 

several circuit components are established. In this book and in the study of 

static electric field in general, it is often assumed that electric charges are in 

stationary positions relative to each other. This is an idealization as in reality it 

is not so. 

1.2   COULOMB’S LAW 

When two electrical charges are situated in space, there is always a force of 

interaction between the charges. The magnitude and direction of this force in 
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relation to the charges is given by the expression called Coulomb’s law. 

Named after the French Physicist, Charles Augustin de Coulomb, this law 

gives an insight into the nature of the invisible forces of interaction between 

charged particles; serving as a basis on which several other electromagnetic 

laws are established.  

Let two charges    and    be situated in space and separated by a distance r 

as shown in Figure 1. Coulomb postulated that the force  ̅ between the two 

charges is directly proportional to the product of the charges and inversely 

proportional to the square of the distance r between them: 

 ̅  
    

  
                                                                                   

 

 ̅   
    

  
                                                                        

The constant of proportionality k itself is inversely proportional to the 

permittivity   of the medium in which the charges are located. That is,  

  
 

   
 

Therefore, in terms of the charges, the separating distance and the permittivity 

ε of the medium, the force is expressed as: 
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  ̅    ̂  
 

   
 
    

  
                                                                      

where  ̂ is a unit vector in the direction of the line joining the two charges. For 

free space, the permittivity    is taken as                . Distance r is of 

course, larger than the size of the charges concerned for the relationship to 

hold.  

The equality of the right hand side and the left hand side of Equation 1 can be 

verified using dimensional analysis by employing the fundamental 

dimensions of the quantities involved.  

The following statements which describe the electrostatic phenomenon can be 

deduced from equation 2. Figure 1.1 (a),(b),(c) illustrate the force between two 

charges with different and same polarity as well as the inverse-square 

relationship of the force with the distance of separation of the charges, 

respectively. 

Q 1 Q 2

+ -

 

Q 1 Q 2

+ +

  

 

𝐹  
 

𝑟 
 

(a) 

 (b)  (c) 

 Figure 1.1: The force between two charges of (a) different signs (b) same signs. (c) The 

inverse square relationship between force F and distance r. 
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If the separating distance r is large enough to be considered infinite, the force 

 ̅ between the two charges becomes zero, this means neither of the charges 

exerts any measureable influence on the other. 

Also, owing to the inverse square relationship between the force and the 

separating distance, the magnitude of the force between two charges reduces 

quite fast with increase in distance r. (See Figure 1.1c). 

It should be noted as illustrated in Figure 1.1 that, if the two charged particles 

are of same sign, the force of interaction between them is repulsive, but if the 

two charges are of different polarities, the force between them is attractive. 

The force between two charges of    each separated by 1m is about a million 

tons         ;                  . 

The pattern of the electric lines of forces for two similar charges and two 

dissimilar charges are shown in Figure 1.2 and Figure 1.3, respectively. 
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Figure 1.2. Lines of force around two positive charges, shown as continuous lines. 

Figure 1.3. Lines of force around two charges of opposite polarities 
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Example 1.1 

A positive point charge of 2    is located 650mm in space away from another 

positive charge of 1    . Determine the magnitude of the force between the 

charges. 

 

Solution 

From Coulomb’s law (Equation 1), the force  ̅ between the charges is given as 

   
    

  
 

  
 

    

    

  
 

 
 

             
 

             

           
 

         

In many physical scenarios, however, there are usually more charges present 

in the space of interest than mere two charges separated by a distance r. These 

complex configurations can be aggregated by applying the principle of 

resolution and superposition of forces. 
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1.3   Electric Field Intensity, E 

When there are numerous different charges located in a particular space of 

interest as is often the case in real world applications, it may be of interest to 

determine, in terms of force, the overall effect of all other charges at a 

particular point in the domain. This brings us to the concept of electric field. 

From an illustrative point of view, if the charge    in Equation 1.2.1 is a 

positive test charge, then the force per unit charge experienced by this test 

charge would be 

 ̅

  

  ̂
 

   

  

  
                                                             

The quantity 
 ̅

  
  is called the electric field intensity due to charge   , at a 

distance r from it. Denoted by E, Electric field intensity due to a static charge 

is defined as the electric force per unit charge experienced by a test charge 

placed at a given distance from the charge. This quantity helps us to know 

the magnitude and direction of the resultant force experienced by a test 

charge located at any point within the field of influence of other charges. 
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Example 1.2 

Three charges are arranged at three corners of a square of length      . The 

charge at the top left corner is      while a charge of       is located at the 

bottom right and bottom left corners. Determine the total electric field 

intensity at the fourth corner. (                ). 

Solution 

The arrangement of these charges and the direction of the interacting forces 

are as shown in Figure 1.4. From definition, the electric field intensity is the 

net force exerted on a unit positive charge situated at the location of interest as 

a result of the presence of other charges. Thus, in our example, a charge    of 

1C is assumed to be placed at the top right corner of the square. 

 

 

 

 

 

 

 

𝐹   

Figure 1.4. Arrangement of the charges for example 2 showing the direction of the forces. 
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By applying equation (2), the magnitude of the force     exerted on the unit 

positive charge due to charge    is: 

     
 

   

    

  
  

    

  
 

                         

           
         

Similarly, the force  ̅  exerted on the unit positive charge due to charge    is: 

     
 

   

    

  
  

    

  
 

                        

           
        

In the same vein, we can compute the remaining force  ̅   taking note of the 

separating distance     

     
 

   

    

  
   

    

  
  

                        

             
        

The effect of     on the unit positive charge must be resolved into vertical and 

horizontal components as shown in Figure 1.4. We can take the advantage of 

the structural symmetry of a square to know that the horizontal component of 

    is           . While the vertical component is           . 

The net force exerted on the unit positive charge must be resolved vectorally 

because information on both magnitude and direction are crucial for complete 

description of vector fields. We can therefore resolve into horizontal (x-axis) 

and vertically (y-axis) component.  
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Force x-components y-components 

             

            

                            

                  

 

Therefore, 

  √  
    

  

 

 

 

 

 

  √                              

At an angle of      (
  

  
)       (

       

       
)         to the negative x-axis. 

𝐹𝑦       

𝜃 

𝐸       𝑉/𝑚 

𝐹𝑥          
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1.4   Electric Field of a Finite Line Charge 

If a charge   is uniformly distributed along the length of a thin wire of length 

 , the wire is therefore considered as a uniformly charged line. To obtain the 

electric field at a point P distance   away from the wire (see Figure 1.5),  

 

 

 

 

 

 

 

 

 

we take an infinitesimal portion of the wire    with corresponding 

infinitesimal charge    and evaluate the electric field at point P distance r due 

to this portion. From Coulomb’s law, 

𝜃 

𝑟 

𝑃 

𝑑𝑄 

𝑑𝐸 

𝑑𝐸 

𝑑𝐸𝑟
E 

𝑑𝐸𝑟
E 

𝑑𝐸𝑦

E 

𝑑𝐸𝑦

E 

𝑑 𝜃 

𝑦 

𝑑𝑦 

𝐿 

Figure 1.5:  Illustration of the electric field due to a finite line charge 
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where  
 

   
 . Each infinitesimal electric field vector    can be resolved into 

vertical and horizontal components     and     respectively. However, 

because of symmetry, the vertical components cancel out one another such 

that only the horizontal component     eventually survives. So that we can 

write: 

     
  

       
                                                        

Expressing    and      in terms of    using ratio of proportion, we have: 

 

 
 

  

  
                                                                   

such that 

   
 

 
                                                                     

Also, in terms of the distance d, the quantity      can be written as: 

     
 

√       
                                                 

Now we can write Equation (2) as 
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(
 
 

  )

       

 

       
 

 ⁄
                                     

To determine the net electric field at the distance d away from the line charge, 

we integrate over the entire length of the line. 

   
   

 
∫

  

       
 

 ⁄
                                                  

 
 ⁄

  
 ⁄

 

Evaluating Equation (7) using table of integrals, we obtain: 

    (
   

 

 

  

 

√     
)+

 

 
 ⁄

 
    

 

 

  

 
 

√(
 
 
)

 

   

                    

   
  

 √(
 
 
)

 

   

                                                     

To verify this, let’s assume that the length L of the line charge tends to zero 

such that the line charge essentially becomes a point charge, the electric field 

from Equation 9 approximately becomes 

   
  

  
 

 

     
                                                   

which is clearly the expression for the electric field at a distance d due to a 

point charge, Q. 
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1.4.1   Electric Field of an Infinite Line Charge 

If the length of the line charge in Figure 1.5 is extended to infinity, it becomes 

an infinitely long positive line charge. Equation 1.4. (9) can be re-written as: 

   
  

 
 √      

  
  

  
 

√  
   

  

                                                    

By factoring-in the infinite length of the line into equation 1, such that L tends 

to infinity (L  ), the term 
   

  
 tends to zero. Hence Equation 1 becomes 

    
  

  
 

 

   

  

  
                                                            

we obtain: 

   
 

   

  

  
 

 

     
                                                   

   
 

 

 

    
                                                           

The term 
 

 
 represents the charge per unit length (the line charge density   ) of 

the line. Hence, 
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Equation (    therefore, represents the electric field inensity at a distance d 

away from an infinite line charge, in terms of the charge per unit length    

and the permittivity   of the medium. 

1.4.2   Electric Field of an Infinite Surface Charge 

The operation of some electronic components are based on the principle of 

charged surfaces, these include strip transmission lines and parallel-plate 

capacitors. The understanding of the distribution of charges on surfaces 

(surface charge density) as a measure of the quantity of charged particles per 

unit surface area, is, therefore, important. 

Consider an infinite yz-plane sheet of charge with the aim of obtaining the 

electric field intensity at a point P on the axis due to the sheet, Figure 1.6.  

 

Figure 1.6: Electric field of an infinite sheet of charge 
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The electric field does not vary in z-direction or y-direction, thus, only the x-

component      of the electric field due to the infinite sheet exists. 

 Consider a strip of width dr on the plane at distance r from the z-axis. 

Let the charge per unit area of the sheet be   . Then the charge per unit length 

   is expressed as 

                                                                        

 The distance between the differential width dr and the point P is R =  

√     . Applying Equation 1.4.1 (5), the field    at P can be expressed as: 

    
    

    √     
                                               

Now,  

     
 

 
 

 

√     
                                                   

Therefore, 

    
  

    

  
   

     
                                                          

In order to put the overall width of the sheet into consideration, we can write 
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 ∫
   

     
     

  

  

  

    

     
 

 
|
  
 

  
   

  

   

                  

If the point P is located on the negative x-axis, we can show that 

    
  

   

                                                             

Therefore, the electric field is generally expressed as  

   
  

   

 ̂                                                          

where  ̂ is a unit vector outward normal to the surface of the sheet. 

The significance of this equation is that, provided the charged sheet is 

considered infinite, the electric is independent of the distance from the plane 

surface. The field several kilometers away from the surface of the sheet is as 

strong as the field near the surface of the sheet. The electric field is, therefore, 

constant in magnitude and direction. 

If a second infinite sheet of charge density     is situated at     in a similar 

plane and beside the first infinite charged sheet, the electric field in the region 

within the two sheets is obtained as the addition of the individual fields due 

to each charge, as illustrated in Figure 1.7. 
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A B

+E

-E

1

2

+E1

+E 2

x=a0,0-E

+E

1

2

 

Figure 1.7.  Electric field between two oppositely-charged infinite sheets of charge 

Let A be an infinite sheet of charge of surface density          located at 

    on the yz plane. Denote the electric field in the positive x-direction due 

to     as   ; the field is     in the negative x-direction as shown (full line). 

Let B be a second infinite sheet of charge, with charge density    , located at a 

distance    , parallel to sheet A, as shown. The electric field of this 

negatively charged sheet is directed inwards, as shown with broken lines. The 

field due to this is     in the positive x-direction. 

The total field to the left of sheet A is          when |  |  |  |. Similarly, 

the total field to the right of sheet B is         . 

However, the total field between the sheets A and B is E =             or 

2  . 

 𝜌𝑠  𝜌𝑠 
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Since       
  

   
,    

  

  
  in the positive x-direction. 

That is, 

      
  

   
 ̂  

  

   
 ̂    

  

  
 ̂                                                   

At every other region apart from in-between the two charged sheets, the net 

field is zero. It should be noted that the assumption is that the sheets are 

infinitely wide, or much wider than the separation distance between the two 

sheets, and that the surface charge density of the two sheets are of opposite 

polarity. Additionally, it is assumed that the distance of separation a, is small. 

Assignment: 

Q. 1: Determine the electric field intensity at a distance d from the axis of a 

ring-shaped conductor with a radius R carrying total charge Q uniformly 

distributed around the ring. 

Q.  2:  Determine the electric field intensity caused by a disc of radius R placed 

in the yz plane with a uniform positive surface charge density    (charge per 

unit area) at a distance d from the centre of the disc along the positive x-axis. 
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1.5   Total Charge of a Volume Charge Distribution 

To understand the concept of volume charge distribution, consider a 

tremendous number of charged particles spread over a definite volume of 

space. With the safe assumption that the distances separating the individual 

particles in the volume are negligible, the charge per unit volume can be 

computed in order to estimate the volume charge density   . 

Consider a small amount of charge    in a small volume   , then 

                                                                               

If we take the limit of the charge-volume ratio = 
  

  
  as    tends to zero, we 

obtain: 

      
    

  

  
                                                                     

such that the total charge enclosed within a specified volume could be 

obtained by a volume integral with limits covering the entire volume. 

  ∭                                                                   
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Consider a cylindrical volume (shown in Figure 1.8), the cylinder is centered 

along the z-axis. If the interest is to determine the total charge enclosed by the 

volume given a volume charge density   . 

 

 

 

 

 

It follows that the total charge within the cylindrical volume is the triple 

integral, using cylindrical coordinate system, expressed as: 

  ∫ ∫ ∫                                                    
 

 

  

 

 

 

 

      ∫   ∫                                                   
 

 

 

 

 

  

Figure 1.8: A charged volume 
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ELECTRIC POTENTIAL 

2.1   The Concept of Electric Potential 

Consider the uniform electric field depicted in Figure 2.1. When charges are 

moved from one point to another against the direction of the electric field E, 

expectedly, work is done against the field. Therefore, a measure of the work 

done in transporting a test charge from one point to another in a direction 

parallel to a uniform electric field is termed electric potential difference 

between the two points. In other words, the electric potential between two 

points A and B is defined as the work done per unit charge in moving a test 

charge from A to B. 

 

 

 

 

 

However, if the initial location of the test charge is so significantly far away as 

to be considered infinity, the potential at point B is considered absolute. 

Therefore, absolute potential at a point is defined as the work done against 

A B 

E 

Figure 2.1 Two points A and B in a uniform electric field 
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the electric field in carrying a unit positive test-charge from infinity to 

that point, where the potential at infinity is regarded as zero.  

When moving the test charge against the direction of the electric field E, more 

energy is expended, thus there is an increase in electric potential. Conversely, 

when moving the test charge along the direction of the field E, there is a 

reduction in potential because the field does the work. It should be noted that 

potential is a scalar quantity with a unit of joules per coulomb (    ).  

Depending on the distribution of electric charges in a uniform electric field, 

there could be surfaces or lines that are of same potential. These are called 

equipotential surfaces or equipotential lines. When a test charge is traversed 

along these lines, there is no change in potential.  

Now consider a point charge Q, located at O, the origin of the Cartesian 

coordinate, as shown. 
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Q

E

E

E

r

 

Figure 2. 2: The potential at a point r away from a charge Q 

Any distance r from O will describe a spherical surface centered on O, and the 

absolute potential at any point on this surface will be equal. That is, the 

spherical surface is described as an equipotential surface. In fact, it does not 

matter the path taken by the test charge in moving from infinity to that point, 

the potential on the surface is still the same. 

It follows therefore that no work is done in moving a test charge from one 

point to another on an equipotential line or surface. 

Note also that the electric field from charge Q is everywhere in the radial 

direction, and cuts the equipotential surface at right angles. In general, it is an 

important property of electric fields that equipotential line or surface is at 

right angles or orthogonal to the direction of the electric field. 
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Since the electric field around a positive charge Q is not uniform, the potential 

difference in moving a test charge from a position    to    as illustrated in 

Figure 2.3, can be regarded as a summation of the incremental potential 

differences,     , within the two end points.   

Q ra rb

dr E

 

Figure 2.3: Potential between two points 

 

      ∫                                                              
  

  

 

where    is an element of distance between    and    and the summation 

becomes an integral when     ;       

The negative sign in Equation 1 is an indication that work is done against the 

electric field in moving from    to   . 

Now,        
 

      
                                                                  

Substituting Equation (2) into Equation (1), we have 

     ∫
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     ∫
 

   

 

  
   

  

  

 
 

   
∫

 

  
                                

  

  

 

 

    
 

   
(
 

  
 

 

  
)                                                           

Thus, the absolute potential at a point   from a charge   is given by                         

                                                                         
 

     
                                                       (6)  

when                   

It is immaterial what path is taken by a test charge to arrive at point  . In other 

words, the work done to move a test charge around a closed path in a static 

field is zero, since the path starts and ends at the same point as illustrated in 

Figure 2. 4. 

 

 

 

 

Q
r

Figure 2.4: A test charge moved along a closed path in an electric field 
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Or, considering Equation (5),       when      .  

A property of the static electric fields is that the line integral of the field 

around a closed path is zero. i.e. expressing in vector form, 

∮                                                                      

A field for which Equation (7) holds is called a conservative or lamellar field. 

The potential difference between any two points of a conservative field is 

independent of the path. 

Potential is a scalar quantity. This means when several point charges produce 

different potentials at a given point, the resultant potential is a simple, scalar, 

addition of the individual potentials of the charges. 

r1

r2

r3

Q1

Q2

Q3

p

 

Fig. 2.5  Potential of a number of point charges 



36 
 
 

                                 
 

    
*

 

  
 

 

  
 

 

  
+                                                           

The concept of line and surface charges have been discussed earlier. Let us 

now assume that a line charge of density   , a surface charge of density    and 

four point charges (               ) are arranged as shown in Figure 2.6. The 

electric potential at point P is the scalar addition of the individual potentials 

due to each of the six charge elements. The principle behind this approach is 

called the superposition principle as applied to electric potential.  

 

Figure 2.6: Superposition principle illustrated with a line charge, point charges and     

surface charge 

 

This principle states that the total electric potential at a point is the algebraic 

sum of the individual component potentials at the point. In other word, the 
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total electric potential at point P is a sum of the potentials at point P as a result 

of the line charge, the point charges and the surface charge. 

                                                                    

The potential at point P due to the line charge situated     meter away from P 

is written as: 

      ∫
  

      

   
 

   
∫

  

   

                                        

Similarly, the potential at P due to the surface charge is: 

         ∫
  

      

   
 

   
∬

  

   

                                   

While that at point P due to the four point charges is: 

        
  

      

 
  

      

 
  

      

 
  

      

 
 

   
∑

  

   

 

 

                 

Therefore the total potential (        is: 

       
 

   
∫

  

   
   

 

   
∑

  

   
  

 
 

   
∬
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2.1.1: Application of the electric dipole principle: The Lightning Flash 

Lightning is a natural phenomenon. It is one of the natural events and forces of nature that 

have been observed by man from time immemorial. The fearful and devastating nature of 

lightning and thunder had aroused man’s curiosity and contemplation over the years. Many 

gods and goddesses have been ascribed the sources of the forces and powers, and the only 

way man knew how to combat the supernatural phenomenon was through divinations and 

prayers. 

Scientific study of this phenomenon began in the second half of the 18th century following 

the discovery by laboratory experimentation of electrostatics in Europe. It was concluded 

that the phenomenon of electrical discharges observed in the sky was of the same nature as 

the laboratory electrical discharges, though of much greater magnitude.  

The thundercloud that produces lightning is now regarded as a huge electrostatic generator 

which produces electrical charges, both positive and negative. The positive charge is 

concentrated in one region of the cloud and the negative in another region, a kind of a giant 

electrical dipole. The charge separation occurs due to aerodynamic motions of atmospheric 

particles and the wind. As the separation between the charges proceeds, the electrical field 

between them, or between one of them and the earth, grows until  an electrical breakdown 

of the air occurs, resulting in lightning flashes, intra-cloud, cloud-to-cloud or cloud-to 

ground as illustrated in Fig. 2.11. 

When the discharge occurs, an intense electrical current flows through the channel 

producing high pressure shock wave explosion and loud audible sound, which is the 

thunder. 
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Earth’s 
surface

Cloud-to-
ground

Cloud-to-
cloud

Intra-
cloud

 

 Fig. 2.11:  Model of thunder clouds and lightning discharges. 

The best protection of a building or structure against lightning is by the installation of 

lightning conductors on top of the building. The design and installation must be done 

carefully taking into consideration the size, shape and location of the building. Copper is 

almost universally chosen  as material for a lightning conductor on account of its good 

conductivity and resistance to corrosion. The tip  of the rod is made sharp so as to enhance 

the concentration of the electric field on it, thereby producing an easy path for the electric 

current to ground, bypassing the structure being protected. Actually, the lightning 

conductor does not prevent a lightning discharge occurring, contrary to popular belief, it 

merely intercepts the path of the ground flashes and harmlessly diverts the current to earth, 

the more reason why the resistance of the ground at the base of the conductor must be very 

low. 
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2 .1  The Electric Dipole 

An electric dipole consists of two point charges of equal magnitude   and 

different signs separated by a short distance  . This separating distance is 

considered to be small compared to the region away from the dipole in which 

the electric field and potential is to be evaluated. 

A good understanding of the concept of electric dipole is crucial in  

electromagnetics as it serves as one of the basis upon which several 

phenomena are based. These include mirroring, conducting planes, dipole 

antennas and infinite conductors carrying current in opposite directions. 

The electric dipole described so far is illustrated if Fig. 2.8, where    is the 

distance between charge    and point  , at which the electric field and/or 

potential is to be determined, and    is the distance between charge    and 

point  , while   is the distance between the midpoint of the dipole length and 

point  . 
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Figure 2.8: The electric dipole illustrating the fields at point P 

 

In order to obtain the fields at a point  , we can minimize the complexity of 

the problem by first determining the electric potential at that point first. 

Now, we proceed by taking the first assumption that   is long enough such 

that the distances   ,   and    can be considered parallel lines as shown in 

Figure 2.9. 
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Figure 2.9:  Extension of the location of point P such that the connecting distances are 

almost parallel. 

 

The difference between distances   and    is  , and The difference between 

distances    and   is   such that we can write: 

  
 

 
                                     

 

 
     

And 

     
 

 
                                      

 

 
     

Therefore, the total electric potential   at far away point   due to the two 

charges is: 
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(
 

  
 

 

  
)                                              

Substituting for the values of    and    in Equation (1), we obtain: 

          
 

   
.

 

  
 
 

    
 

 

  
 
 

    
/                          

Simplifying Equation (2) and ignoring the terms with multiple powers of   

because r is very large compared to  , we find that: 

  
      

     
                                                             

The term    is referred to as the dipole moment.  

It is therefore evident that the potential at point   due to the dipole is 

inversely proportional to the square of the distance   between the centre of the 

dipole and  . This is in slight contrast with the expected relationship between 

the electric potential at point   due to only one of the charges, wherein the 

electric potential maintains an inverse relation with the separating distance 

between the charge and point  . 

We remember that the electric potential between two points is generally 

denoted by: 

   V =  - ∫  ̅    ̅̅ ̅                                      (4) 
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Note that Equation (4) is the integral of the product of two vectors, namely, 

the electric field intensity  ̅ and the displacement   ̅̅ ̅ along which the test 

charge is moved. This implies that when the two vectors are not in the same 

direction, the magnitude of the potential is Edr (Cosθ) where θ is the angle 

between them; moreover, when θ =    , i.e., the two vectors are at right angles 

to each other, the potential difference along the displacement is zero, an equi-

potential line. 

In the reverse operation, we can write: 

    
  

  
  ̂                                                                       

The right hand side of equation (5) is analogous to finding the gradient of the 

electric potential  . Thus, 

                                                                             

And in spherical coordinates, we can present the electric field E at point 

        with symmetry or no variation in the azimuthal     direction, as:  

    ̂
  

  
  ̂

 

 

  

  
                                                                   

Substituting   from equation (3) into Equation (7) and differentiating 

appropriately with respect to r and  , we have: 
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   ̂
      

     
  ̂

      

     
                                                     

Equations (3) and (8) are the relations for the electric potential and electric 

field intensity at point        from the electric dipole. Once again, it should be 

noted that these relations are obtained with the assumption that the length d 

of the electric dipole is very small compared to the distance between point P 

and the centre of the dipole.  

The plot of the potential and the electric field of a dipole is shown in Figure 

2.10, which is the same as was presented in Figure 1.3 at the earlier portion of 

this course.  

 

Figure 2.10:  The plot of the potential and electric field of an electric dipole 
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The potentials are in dotted lines while the electric fields are in solid lines. It 

would be observed that at any given point, the equipotential line (or surface) 

is at right angles (or orthogonal) to the electric field lines.  

GAUSS’ LAW AND THE ELECTRIC FLUX 

When charged particles are close enough as to cause significant interaction, 

lines of force are generated between them. These lines of force (otherwise 

called “flux”) generally originate from positive charges and terminate on 

negative charges. If a section of the surface is cut by a plane (see Figure 3.1), 

an estimate of the total number of flux lines passing through this surface can 

be obtained.  

 

 

 

 

 

. 

. . 

Figure 3.1: The electric flux through a normal and inclined surface. 
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The electric flux  , through any section of this surface can be obtained as a 

product of the average flux density,  ̅           in Coulomb per square meter, 

(    ) and the area  ̅                 of the section (in square meter). The 

direction of the vector  ̅ is taken to be the outward normal to the surface. It, 

therefore, follows that the electric flux through any section of this surface is 

the integral of the flux density over the area of the section of surface. 

In general, for any surface described by,   ̅̅ ̅  and located at a distance r away 

from a charge Q, the electric flux   through it is related to the flux density 

  ̅by: 

  ∬  ̅     ̅̅ ̅                                                          

In spherical coordinate system depicted by Figure 3.2,  
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As such, we can re-write the equation of the electric flux emanating from a 

charge Q located at the centre of a sphere as: 

  ∫ ∫ ∫  
  

   

 

   

  
 

 

 

                                                        ∫ ∫ ∫  
  

   

 

   
          

 

 
                                     

     = D (4π  )                (3) 

Equation (3) describes the total flux from the surface of the sphere of radius r,  

emanating from the charge at the centre of the sphere. Since 4    is the 

Figure 3.2: The spherical coordinate system showing location of an infinitesimal surface ds  
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surface area of a sphere of radius r, we can equate the total flux emanating 

from the spherical surface to the charge Q producing the flux, and write, 

                         ∬  ̅     ̅̅ ̅ = D(4π  ) =  Q                                              (4) 

   Or      D  =   
 

    
                                   (5) 

Noting, also, that the magnitude of the electric field intensity,  ̅, around a 

single isolated charge, Q, at a distance r from the charge, is given by, 

    E  =  
 

     
                                      (6) 

we can establish the relation between the flux density D emanating from 

charge Q to the electric field intensity E as, 

     ̅  = ε  ̅  =   
 

    
   ̂                                        (7) 

Equation (5) implies that the magnitude of  ̅ at radius r is identical to the 

surface charge density    in C     were charge Q to be distributed uniformly 

over the spherical surface instead of being centralized at the centre of the 

sphere. 
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The expression, Equation (4), above is, therefore, the basis upon which Karl 

Freidrich Gauss (1813) formulated the law, popularly known as Gauss’ law, 

stated as follows:  

3.1  Gauss’ Law 

the surface integral of the outward normal component of the electric flux 

density over any closed surface is equal to the charge enclosed. 

The closed surface need not be spherical in shape; it is a law applicable to any 

closed surface within which the charge Q resides; moreover, Q need not be a 

single charge. If there are multiple charges, positive and negative, Q will be 

the scalar addition of the charges or the net charge. 

A simple illustration which makes Gauss’ law easier  to visualize is that of a 

uniformly permeable spherical perfume container. It would be observed that 

the total perfume fragrance oozing out of the sphere will be same as the initial 

concentration of perfume within the sphere. 

 Assuming the charge Q were  to be uniformly distributed within the volume 

of the sphere instead of being concentrated at the centre with the volume 

charge density   ,  in C      and the incremental volume   , Gauss’ law can 

be expressed as: 
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∮  ̅       ̅̅ ̅̅    
 

 

  ∮                                                      
 

 

 

The laws propounded by Coulomb and Gauss are important laws in the study 

of charges of different configurations; they represent handy tools in 

understanding the field distributions at different regions around charged 

structures of different shapes. The application of Gauss’ law greatly simplifies 

the calculation of the electric field intensity and/or the potential of charge 

distribution in the vicinity of conductors of simple geometries, instead of 

solving the integral equations involved. 

 

3.2   Electric Field and Potential of a Charged Spherical Shell 

Consider a uniformly charged spherical shell of radius a, presumably of zero 

thickness with a charge Q uniformly distributed on its surface. It is required to 

calculate the electric field intensity and the potential distribution within and 

outside of the sphere. Assume the sphere is in air. 

Because there is no charge enclosed in the region     (inside the sphere), the 

integral of D around any closed surface within the sphere is zero. It becomes 

understandable, therefore, that     inside the sphere. However, for regions 
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described by    , the electric flux density  ̅  =   ̂
 

    
   applying Gauss’ law 

and noting that the total charge enclosed is Q. The electric field intensity  ̅ = 

 ̂
 

      
 . That is, the electric field at any point outside the charged sphere is 

same as the field due to a point charge Q located at the centre of the sphere.  

For the electric potential at different regions due to the charged sphere, we 

can write: 

   ∫     
 

 

  ∫
 

     
 
    

 

     
             /                   

 

 

 

The potential inside the sphere is constant because it requires no additional 

work to bring a test charge from infinity to any region within the sphere than 

the surface of the sphere. The potential within and outside the sphere is 

expressed as, 

   

{
 
 

 
 

 

 

     
                                                           

                                                                            

   
 

     
                                                                   

 

Figure 3.3 a-c portray these information including the expected discontinuity 

observed in the electric field distribution and the continuity of the potential 

distribution at the sphere-air interface. 
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3.3.   The Coaxial Cable 

A coaxial cable is made up of an inner conductor surrounded by an outer 

conductor wherein both conductors are separated by a dielectric material. The 

term “coaxial” comes from the understanding of the fact that the inner and 

outer conductors share a common geometric axis.  

A good knowledge of the behaviour of the electric field and potential 

everywhere around a coaxial cable is very important. This is because the 

coaxial cable is a very common type of transmission line with a wide range of 

  

𝑄

 𝜋𝜀 𝑎
 

𝑉  
𝑄

 𝜋𝜀 𝑟
 

 𝒄  

Figure 3.3 Diagram showing the distribution of the electric field and potential of a charged 

spherical shell.  

V 
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applications. These include their use for distributing TV signals, computer 

network connections, as well as feed lines for radio transmitters and receivers. 

Consider the coaxial cable shown in Figure 3.4, where the inner conductor is 

of radius, a, and the outer conductor is of radius, b. 

The thin inner conductor has a linear positive charge per unit length   . The 

two conductors are separated by a dielectric material of permittivity  . To 

obtain the electric field at a region described by,      i.e. any region in-

between the two conductors, we need to draw a Gaussian cylindrical surface 

of radius, r, surrounding the inner conductor, and apply Gauss’ law to this 

surface, to obtain, 

 

 
 ∮                                                             
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Replacing the charge Q in Equation     above with the charge per unit length, 

and a length, h, of the conductor, we have, 

   

 
 ∮                                                            

We can eliminate the dot product in Equation     because   and    are in the 

same radial direction. Furthermore, the   can be taken outside the integrand 

because the electric field is constant along the cylindrical length owing to the 

symmetry of the figure; and there is no flux through the bottom and  the top 

of the cylinder. Therefore, Equation     becomes: 

𝜌𝐿  
𝑄

𝐿
 

r 

Dielectric 

Conductor 

Conductor 

  

Figure 3.4: A coaxial cable showing the inner and outer conductors 

a 
b 

b 
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  ∮                                                         

For a cylinder, the surface area is circumference times the height, neglecting 

the top and bottom faces through which no flux emanates, 

i.e.,              

   

 
  ∮                                                                                     

      
  

    
                                                                           (5) 

The potential difference between the inner and outer conductors of the coaxial 

cable is obtained from, 

      =  ∫
    

      

 

 
   =  

  

    
 ∫

  

 

 

 
                                   (6) 

   = 
  

    
      

 

 
                                (7) 
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QUIZ: 

Two concentric hollow spherical conductors in free space, centred at the 

origin of the Cartesian coordinates, have radii, a, and, 2a, respectively. The 

inner sphere carries a charge of, +3Q, and the outer one, -2Q.  Determine 

(i) the potential difference between the conductors, and 

(ii) the electric field intensity and the potential at a point distance, 3a,  

from the centre. 

3.4  The Divergence Theorem from Gauss’ Law 

In vector calculus, the divergence theorem, also known as Gauss’ theorem, is a 

result that relates the flow (or flux) of a vector field through a surface to the 

behavior of the vector field inside the surface. 

Applied to electrostatics, the vector field is that of the electric flux density  ̅ ; 

and the theorem is expressed as, 

                             ∬  ̅.   ̅̅ ̅  =  ∭   .  ̅ dv                                           

(1) 

where the LHS of Eqn. (1) is the surface integral of the flux density over  the 

closed surface surrounding the volume from which the flux emanates, as 

illustrated in Fig. 3.6. 
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Q

 

Figure 3.6:  Electric flux from a volume enclosing a charge Q 

Thus, the divergence theorem may be stated as follows: 

The integral of the normal component of the electric flux density over a closed 

surface is equal to the integral of the divergence of the flux density 

throughout the volume enclosed by the surface. 

By definition, the divergence of the vector function  ̅ is expressed as, 

         ̅  =  lim dv     
∬ ̅   ̅̅̅̅

  
             (2) 

If we assume a small element of volume, dv, containing charge , Q, which is 

uniformly distributed within the volume with  volume charge density,   , (C 

   ), then, by applying Gauss’ law, we have, 
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   ∬ ̅.   ̅̅ ̅  =  ∭    dv  =  Q      (3) 

Combining Eqns (1) and (3) we have, 

   ∭     ̅ dv =    ∭   dv       

 (4) 

  Or,           .   ̅    =              (5) 

In the Cartesian coordinate system, 

                  .  ̅  =     ̂ 
   

  
   +    ̂  

   

  
  +     ̂  

   

  
    (6) 

where the symbol, (del or lamda),  , treated as a vector, is expressed as, 

                         =    ̂ 
 

  
  +    ̂  

 

  
   +    ̂ 

 

  
 ,   and                

(7) 

    ̅   =      ̂    +      ̂       +    ̂          (8)     

Eqn (5) is one of the most important equations of electrostatics, relating the 

divergence of the electric flux density to the volume charge density. 

Eqns (3) and (5) are the same in concept, expressing Gauss’ law in two 

different forms, first, in integral or macroscopic form, Eqn (1), and second, in 

differential or microscopic form, Eqn (5). 
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3.4.1  Poisson’s and Laplace’s equations 

Eqn (5) may be further expanded, given the relatioships between   ̅,  ̅ and V, 

already established, as follows, 

     ̅  =      .     ̅  =   (    .    ̅̅ ̅  =       ( -   V)  =   -       V  =     ,    

 (9) 

Or,       V   =   -  
  

 
               (10) 

known as Poisson’s Equation. 

In a volume of space where there      =  0 , no charge density, we have, 

       V   =   0             (11) 

known as Laplace’s Equation. 

Eqns (10)and (11) are very handy in the solution of a number of electrostatic 

problems of various configurations subject to certain boundary conditions. 

3.5  Boundary Conditions at the Interface of Two Dielectric Materials 

Electric field behaviour in different materials differs as their permittivities 

differ. Therefore, when two different materials form a composite, a dielectric 

boundary with interesting properties is created. As a result, the properties of 
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these boundaries need to be understood in order to understand the behaviour 

of the field around the boundaries as electromagnetic waves traverse through 

them. Electrostatic boundary condition is very important in many ways, in 

optics, for example, boundary condition allows us to derive the various 

equations bordering on reflections and refractions at the interface between 

two different media and their refractive indices, and so on. Remember, light is 

a member of the family of electromagnetic waves! 

The electric field entering the interface from medium 2, from any arbitrary 

angle, as shown in Fig. 3.7, could be resolved into two components, namely, a 

component parallel to the surface (i.e the tangential component) and the 

component  normal to the surface (the normal component). Similarly, for the 

electric field emanating from medium 1. 

Medium 1

Medium 2

 

 Fig. 3.7: Electric field entering and emanating the interface between two media 
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First, consider the tangential component of the electric field, illustrated in Fig. 

3.8. Let the media have permittivities,   ,   , and conductivities,   ,   , 

respectively, as shown. If both media are perfect dielectrics, the conductivities 

are, of course, zero. Consider a rectangular path, half in each medium, of 

length     parallel to the interface and length  y normal to the interface, as 

illustrated. Let the electric field intensity tangent to the boundary in medium 1 

be    , similarly     for medium 2. The work per unit charge required to move 

a positive test charge round the rectangular closed path is the line integral 

∮  ̅   ̅. By making  y tend to zero, since we are considering the interface 

between the two media,, the work along this perpendicular section is zero. 

Medium 1
Є1,  σ1

Medium 2
Є2,  σ2

Δx

Δy

y

x

    

Et1

Et2

 

Fig. 3. 8: Tangential components of the electric field at interface of two media 
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The line integral of the electric field intensity around the rectangle, in the 

direction of the arrows,will then be, 

           -           =  0    (1) 

 or              =                           (2) 

According to Eqn (2), we conclude that the tangential components of the 

electric field intensity are the same on both sides of the boundary between 

two dielectrics, or, that the tangential electric field intensity is continuous 

across such a boundary. 

It is significant to note that if medium 2 happens to be a metal or any perfect 

conductor, the static electric field intensity within such a medium is zero. 

Hence, that in medium 1 will also be zero by implication of Eqn (2). That is, 

the tangential component of the electric field intensity at a conductor/dielectric (or air) 

interface is zero; only the normal component exists. 

3.6.  Electric Field Normal to the Interface 

To determine the electric field intensity normal to the interface, we could take 

the Gauss’ law approach. This approach requires us to employ some form of 
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Gaussian surface. For this thin interface, we can pick a Gaussian pillbox with an 

area S parallel to the surface and thickness h across the interface. 

h

E
Medium 1

E
Medium 2

Gaussian 
pillbox E

Medium 1

E

h

Interface

Medium 2

  (a)       (b) 

Figure 3.9:  (a) The normal component of electric flux at an interface (b) A section of 

the composite showing the pillbox centered on the interface 

 

This pillbox is centered on the interface such that the part with continuous 

line falls into medium 1 while the part with the dotted line falls into medium 

2. From Gauss’ law, we have: 

∮  
 

 
    

 

 
 ∫   dv                                                  (1)    

The left hand side of Equation (1) represents the total outward electric flux 

from the pillbox, which, clearly, is the difference between the  flux emanating 

from the top of the pillbox  in medium 1 minus the flux entering the pillbox in 

medium 2. Therefore, the net normal component of the flux is: 
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  (         
                

      )                                                  

Now, if we shrink the height of the Gaussian pillbox to zero leaving only the 

top and bottom of the pillbox (i.e.    ) such that the sides no longer 

contribute to the electric flux, we would no longer be talking about a volume, 

rather the pillbox becomes essentially a surface, such that the right hand side 

of Equation (1) becomes the integral of a surface charge, with a surface charge 

density     ( C     ) , i.e, 

 

 
∫     

 

 
∫     

   

 
                                                 

(         
                

      )  
  

 
                                                

The implication of Equation (4) is that the normal component of the electric 

field intensity is discontinuous across the boundary by an amount  
  

 
 .  

3.7  Capacitors and Capacitances 

Two  conductors separated by an insulating or dielectric material constitute a 

capacitor; the popular shapes of which  are parallel- plate, cylindrical or 

spherical. By definition, the capacitance, C, of a capacitor is the ratio of the 

electrical charge, Q, on one of the conductors to the potential difference or 

voltage, V, between the conductors. That is, 
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 C =  
 

 
                     (1) 

3.7.1 Parallel-plate capacitor 

Consider a parallel-plate capacitor of area A,carrying charge +Q on the upper 

plate, charge -Q on the lower plate and voltage, V, between the plates. Let the 

plate separation be, d. The electric field intensity, E, the flux density, D and 

the permittivity,    of the medium between the plates, are all indicated in the 

diagram of Fig. 3.10.  

          

      A       +Q     

  V E D d     

                                    -Q 

Fig. 3.10: Capacitance of a parallel-plate capacitor 

From the analysis made in section 1.4.2, (see p. 26), we find that the electric 

field intensity between two oppositely-charged infinite, or large, sheets of 

charge is given by, 

 E  =  
  

 
      (1) 

where,   , is the surface charge density (C    ).  We can apply this relation to 

the parallel-plate capacitor situation, assuming area, A,  is much greater than 

the plate separation, d. 
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We have the following relations: 

     =  
 

 
      (2) 

 E   =   
 

 
      (3) 

Combining Eqns (1), (2) and (3), we have, 

 E  =  
 

  
  =   

 

 
     (4) 

Hence, the capacitance,                   C  =  
 

 
  =  

  

 
    (5) 

 

Example 1: 

Calculate the capacitance of a parallel-plate capacitor in air  of plate area of 1 

   and plate separation of 1 m. 

Ans:   

C =  
   

 
  =  

                 

 
   =  8.854  pF 

Note: The capacitance remains the same value if the dimensions are reduced 

proportionately, e.g.,  if A  = 0.01    ( or 10     , and  d  =0.01m (or 10 mm). 

This is a way of devising a very small capacitance for use in a laboratory 

experiment if manufactured capacitor of this small value is not available. 

Example 2: 

A parallel-plate capacitor is made of two square plates each of dimension 600 

mm by 600 mm and plate separation of 10 mm. A dielectric slab of relative 

permittivity of 4 and thickness of 6 mm is placed on the lower plate, leaving 
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an air space of 4 mm between the upper plate and the slab. Calculate the 

capacitance of the capacitor. 

Answer: 

The arrangement  is as shown in the following diagram.  

Air space

Dielectric slab

4 mm

6 mm

Ca

Cd

 

It consists of two parallel-plate capacitors in series, an air capacitor of 

capacitance    and the other, filled with the dielectric, of capacitance,   . 

    =  
   

 
   =   

                 

     
  =  796.86 pF 

      =  
     

 
   =  

                       

     
  =  2,125 pF 

The effective capacitance, C, is given by, 

 

 
  =  

 

  
  +  

 

  
        or    C  =  

    

      
  =  579.54 pF 

 

3.7.2: Capacitance of a cylindrical or coaxial cable capacitor 

Refer to Figure 3.4  of Section 3.2, where the inner conductor of a coaxial cable 

carries a charge per unit length,     = 
 

 
 

The potential difference between the inner and outer conductors is calculated 

to be, 
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      =  
  

   
      

 

 
    (Eqn 3.3.7,  p.57 )  (1) 

It follows, therefore, that the capacitance per unit length of the coaxial cable is, 

 C  =  
  

   
  =  

   

     
 

 
 
           (2) 

Example 3: 

Calculate the capacitance  per unit length of a coaxial cable for which the 

radius of the outer conductor is twice the radius of the inner conductor and 

the space between them is filled with a dielectric material of relative 

permittivity     =  4. 

Ans: 

C  =  
    

     
 

 
 
    =  

                     

   
   =  321  pF     

3.7.3: Energy stored in a capacitor 

It requires energy, or work, to charge up a capacitor. Suppose at an instant of time 

the plate of a parallel-plate capacitor is charged to a potential, V, between the plates 

while the charge on the plate is, q. 

Let, dW, be the amount of work done to increase the charge by, dq, then we have, 

  dW   =  Vdq        (1) 

Using         q  =  CV we have,      (2) 

  dW   =   
 

 
  dq        (3) 
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If the process of charging starts from q =  0, till a final charge, Q, is delivered on the 

plate, the amount of work done is, 

 W  =  
 

 
  ∫     

 

 
  =    

 

 
  
  

 
        (4) 

This is the energy stored in the capacitor. 

Eqn (4) is written in various forms, using the relation, Q  =  CV, as follows: 

                         W  =  
 

 
  

  

 
  =   

 

 
 C     =  

 

 
 Q V            (5) 

3.7.4  Energy density within a capacitor 

The energy referred to above is stored in the electric field between the plates 

of the capacitor. 

Suppose we take a small cube of space of length,   , within the space between 

the plates, as shown in Fig. 3.11, such that the top and bottom faces of area 

    ) are parallel to the capacitor plates. If thin sheets of a metal foil are placed 

coincident with the top and bottom faces of the volume, the electric field,  ̅, 

will be undisturbed, and the arrangement constitutes a small parallel-plate 

capacitor. 
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E l

l

l

 

Fig. 3.11 Imaginary cubic space between parallel-plate capacitor 

 

The potential difference between the top and bottom of the cube is, 

    V   =  E           (1) 

and the capacitance,     = 
       

  
 =           using Eqn 3.7.1 (5) (2) 

The energy stored within the cube of space is, 

      =  
 

 
  ( C ) (        =  

 

 
                  

   =  
 

 
       (            (3) 

Hence, the energy per unit volume, or the energy density is defined as, 

       =  lim        
   

     
    =  

 

 
       (J     )  (4) 

The above expression holds for an isotropic and homogeneous medium where 

 ̅ and  ̅ are in the same direction, and D  =    E. In general, for a nonisotropic 

medium where  ̅ and  ̅ may not be in the same direction, the energy density 

is expressed vectorially as, 
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    =  
 

 
  ̅.  ̅         (5). 

4.0  ELECTRODYNAMICS 

4.1  Introduction 

Thus far, under electrostatics, we have considered electrical charges that are 

static or stationary and the corresponding electric fields and potentials 

resulting therefrom. We now wish to consider moving charges and their 

effects. A moving charge constitutes an electric current. In metallic conductors 

the charge is carried by electrons. In liquid conductors as in electrolytes in 

batteries the charge is carried by ions, both positive and negative. In 

semiconductors the charge is carried by electrons and holes; the holes 

behaving like positive charges. Here, we start by considering steady  direct 

electric currents flowing in conductors and  fields associated with them. 

Historically, Hans Christian Oersted (1819) first discovered that a wire 

carrying a current, I, is surrounded by a region of magnetic field, the presence 

of which could be detected by a compass needle or iron filings. Tracing the 

direction of the field by the compass, it is observed that the needle always 

turns in a direction that is perpendicular to the wire and to the radial line 

extending out from the wire as the needle moves round in a closed circle 
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round the wire, as illustrated in Fig. 4.1. The magnetic field strength is 

characterized by a magnetic flux density,   ̅ analogous to the electric flux 

density,  ̅. 

 Consider a wire passing through the page such that the cross-sectional area is 

represented by the small circle at the centre of Fig. 4.1. The letter X indicates 

that the direction of the current is into the page while the flux density B goes 

round the wire in a clockwise direction. If the current changes direction, B also 

changes to the anticlockwise direction, the familiar right-hand rule; the thumb 

pointing in the direction of the current while the fingers of the right hand encircle the 

wire in the direction of the lines of magnetic flux! 

 

Fig. 4.1 Magnetic field round a current-carrying wire 

 

B 

B 
 

B 

B 

X 



75 
 
 

4.2  The magnetic field of a current-carrying wire: the Biot-Savart law 

The magnitude of the magnetic flux density, B, is found to depend on the distance from the current-

carrying wire, the value of the current and the length of the wire. Considering a small element of 

length,   , of wire carrying a current, I. The incremental value of B at a point, P(r,θ), for r     , as 

shown in Fig. 4.2, is given by the relation, 

P (r,0)

B (inward)

0

I
r

 

Fig.4.2  Determination of B at point P(r,θ ) 

     

    = k 
        

  
     (1) 

where, k, is a constant of proportionality given by, 

      k  =  
 

  
      (2) 

and,   , is the permeability of the medium. The permeability of vacuum, or air, is, 

       =  4  x       H     

Combining Eqns (1) and (2) we have the fundamental relation, 

       = 
 

  
 
        

          (3) 

 Eqn (3) is written in infinitesimals rather than incrementals. The direction of dB is normal to 

the page, inward at point P. 

In order to determine the value of B due to a current I in a long, straight or curved 

conductor placed on the plane of the page, Eqn (3) will be integrated with respect to the 

infinitesimal length dl to obtain,  

X P ( r, 𝜃 ) 

I 
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     B  =   
  

  
 ∫

    

    dl       (4) 

Eqns (3) and (4) are the expressions of the Biot-Savart law. 

 

4.2.1  The magnetic field of an infinite linear conductor 

The magnetic field or flux density  ̅ at a distance R from a thin linear 

conductor of infinite length carrying a current I can be obtained from eqn.  

4.2.4 above, and the diagram is illustrated in fig. 4.3. 

I

0

0 d0

R

Infin ite linear 
conductor

B (inward)

P (r,0)

dl

r

 

Fig. 4.3: Flux density from an infinite  linear conductor  

 

From the geometry of the figure, the following substitutions are made: 

dl sin θ  = r dθ,  R  =  r sin θ  and, 

     
   

   
 ∫

 

 

 

 
 dθ  =  

   

     
  ∫     

 

 
dθ        (1) 
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4.2.2  The magnetic field of a current-carrying loop 

Let the loop of  radius R be placed on the x – y plane and centred on the origin of the 

Cartesian coordinates, while the axis of the loop coincides with the z-axis as shown in Fig. 

4.4   

 

 

r

y

x

zLoop axis

z

0

dl

dl’

0=90 0

0=0

I

R

Loop with 
current I

dBn

dB
900

dBz

P

 

Fig. 4.4 Flux density from a current-carrying loop 

At a point P on the loop axis, the contribution dB produced by an element of length 

dl of the loop is, 

  dB  =  
          

                          (1)  

where θ is the angle  between dl and the radius vector  of length r. 

The direction of   ̅̅ ̅̅  is at right angle to the radius vector of length r. 

From the geometry of the figure, it can be shown that the component      of  dB in 

the direction of the z-axis is given by, 
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     =  dB cos    = dB 
 

 
;  

With     =     ;         = R d    and  r  =          
 

   we have, 

 

         =   
      

                 /   
 d               (2) 

By the symmetry of the figure, the total flux density B =    , hence 

 B  =      =   
      

                 /   
  ∫   

  

 
  =  

      

                /   
              (3) 

At the centre of the loop, i.e, at z = 0, we have 

   B  = 
    

   
        (4) 

 

4.3.  Effect of a magnetic field on a current-carrying wire 

If a current-carrying wire is placed in a uniform magnetic field of flux density B, 

it experiences a force. The relationship between the force  ̅, current   ̅and flux 

density  ̅ is expressed  vectorially as, 

  ̅      ̅      ̅ ) L        (1) 

where L is the length of the wire lying within the magnetic field. 

For an element of length dl of the conductor, giving rise to the element of 

force   ̅̅̅̅ , we may write, 

   ̅̅̅̅   =    ̅       ̅ ) dl          (2) 

In magnitude, we have, 

 dF  =   I B dl sin            (3) 

where   is the angle between the direction of I and that of B, and the direction 

of dF is at right angles to the plane containing I and B such that the three 
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vectors  ̅,   ̅ and  ̅ form a right-handed set, or turning from   ̅ to  ̅ through 

angle  ,  ̅ is in the direction of motion of a cock-screw, as in Fig. 4.5. 

y

x

z

F

B

I 0

Conductor of 
length L  

  Fig. 4.5 Vectorial diagram of directions of I, B and F. 

NOTE: If a point charge Q moves with a velocity u, covering a distance dl in time dt, we may 

write Qu  = Q(
  

  
)  =  

 

  
 dl  =  I dl. Hence Eqn (2) above may be expressed as  

   ̅̅̅̅   =     ̅dl    ̅ )  =  Q (  ̅     ̅)      (4) 

 

4.4. Lorentz Force 

If a charge Q moving with a velocity u is subjected to a combination of an electric field of 

intensity E and a magnetic field of flux density B, the charge will experience a force F 

expressed vectorially as, 

   ̅  =  Q   ̅        ̅      ̅        (1) 

Eqn (1) is referred to as the Lorentz Force. 

 

4.5 The force between two parallel linear current-carrying conductors 

Consider two parallel wires 1 and 2, carrying current   ,   , respectively, in the same 

direction, as shown in Fig. 4.6. The direction of the magnetic induction    produced by 
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current    in the position of conductor 2 is into the plane of the paper. Hence, conductor 2 

experiences a force    due to the effect of    on    , as shown in Fig. 4.6. 

x

F1F2

I2I1

1 2

B2
B1

 

  Fig. 4.6 Force between two parallel current-carrying conductors 

 Similarly, the force    on conductor 1 due to current    is as indicated. The two conductors 

are, therefore, subjected to force of attraction. Conversely, the two conductors will repel 

each other if the currents   ,    flow in opposite directions. Note that this contrasts with 

electrostatics where like charges repel but opposite charges attract! 

Force   ̅ is given by 

    ̅       ̅       
̅̅ ̅  (N    )      (1) 

Or,                              =            (N    )      (2) 

Now,          =  
    

   
      from eqn (4.2.4)     (3) 

where d is the distance between the two conductors. 

Therefore,                           =  
        

   
  =          (4) 
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Observe that overhead high voltage power transmission lines carrying currents in same direction are 

normally kept separated by use of wooden spacers to prevent the force of attraction that might 

otherwise lead to sparking or short circuit. 

4.6. Ampere’s Law and H 

From eqn (4.2.4) the flux density B at a distance R from a long straight conductor carrying 

current I is given by 

   B  =  
   

    
       (1) 

If B is now integrated around a path of radius R enclosing the conductor once, we have 

   ∮  ̅.   ̅  =  
   

    
  ∮    =  

   

    
  2    =           (2) 

Or,    ∮  ̅.   ̅̅ ̅  =              (3) 

Equation (3) may be made independent of the medium by introducing another vector, 

   ̅  = 
 ̅

 
        (4) 

known as the magnetic field intensity,  such that 

  ∮  ̅ .   ̅̅ ̅  =  I        (5) 

Eqn (5) is a general rule, not only for a straight conductor as above, but in all other cases 

where the integration is taken over any singly closed path enclosing a current. This is known 

as Ampere’s Law, which states that the line integral of the magnetic field intensity H around 

a single closed path is equal to the current enclosed. The application of this law greatly 
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simplifies the calculation of the magnetic flux density B or the magnetic field intensity H. 

This is similar to the application of Gauss’ law in electrostatics in the solution of the electric 

flux density D or electric field intensity E. 

4.6.1 Application to a solid cylindrical conductor. 

If, instead of a long thin conductor, we have a solid cylindrical conductor of radius R  

carrying a current I uniformly distributed within it, with uniform current density J, we can 

derive expression  for H  both inside and outside of the conductor  by applying Ampere’s 

law, as illustrated in Fig. 4.7.  

(a)

(b)

r

R

H

Wire

Current out 
of page

H = 
I

2   R

H  

r  

Fig. 4.7:  H inside and outside of a solid current-carrying conductor. 

 

The current density 

 J  = 
 

      A          (1) 
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Inside the conductor, the value of H at a distance r from the axis of the conductor is 

determined solely by the current inside the radius r. 

Thus, for r   R, let the current flowing inside be   , and H =    , then 

    =   
 

              =   
    

          (2) 

   ( 2      =       =   
    

  
        (3) 

    =  
 

     r          (4) 

Outside the conductor, i.e. r  , we have 

H ( 2       =  I     or    H  =  
 

    
       (5) 

At the surface of the conductor, r  =  R, and H  =  
 

    
    (6) 

A graph of the variation of H with r inside and outside the conductor is shown in Fig. 4.7 

Table 4.6.1 gives the comparison between Gauss’ law and Ampere’s law. 

Table 4.6.1:    Comparison between Gauss's Law and Ampere's Law 

Gauss’s Law Ampere’s Law 

Determines  ̅ Determines  ̅ 

for symmetric structures for symmetric structures 

Employs closed surfaces Employs closed loops 

∮  ̅    ̅̅̅̅  =  
 

 
 

∮  ̅ .    ̅̅̅̅̅=  Q 

∮  ̅     ̅ =     

∮  ̅ .    ̅  =  I   

 

Closed surface integral Closed path integral 
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4.7 Divergence of  ̅ and curl of  ̅ 

4.7.1 Divergence of  ̅ 

The flux tubes of a static electric field originate and end on electric charges. On the other 

hand, tubes of magnetic flux are continuous, they have no sources or sinks; there are no 

isolated magnetic poles. This is a fundamental difference between static electric and magnetic 

fields. To describe the continuous nature of magnetic flux tubes, we can write, 

    ∮  ̅ .   ̅̅̅̅   =  0       (1) 

i.e., as many magnetic flux tubes as enter any closed surface emerge from it. 

Eqn (1) may be regarded as Gauss’ law applied to magnetic fields. 

By the definition of the divergence of a vector quantity, eqn (1) may be expressed as, 

      .  ̅  =  0       (2) 

Eqn (1) is the integral form, the macroscopic form, while eqn (2) is the differential form, the 

microscopic form, of Gauss’ law applied to magnetic fields. 

4.7.2 Curl of  ̅  

From eqn (4.6.5), Ampere’s law in integral form is expressed as, 

    ∮  ̅ .   ̅  =  I =  ∬  ̅ .   ̅̅̅̅      (1) 

Consider an incremental plane area,   , in a conducting medium through which an 

incremental current,      passes. The curl of,  ̅, is expressed as, 

 Curl  ̅  =       ̅  =  lim        
∮  ̅    ̅̅ ̅

  
  =  lim        

  

  
  =    ̅   (2) 

  Or,                 Curl  ̅  =   ̅       (3) 
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where,  ,̅ is the current density (A   ) at the point around which the area dS shrinks to zero. 

Curl  ̅ is a vector at right angles to    and in the direction of  .̅ 

Eqn (1) is the integral form, the macroscopic form, while eqn (2) is the differential, 

microscopic form, of Ampere’s law. 

      ̅  is expressed in determinant form, in Cartesian coordinates as, 

                                      ̅  ||

 ̂  ̂  ̂
 

  

 

  

 

  
      

||                                                                   

 

  ̂ (
   

  
 

   

  
)   ̂ (

   

  
 

   

  
)   ̂ (

   

  
 

   

  
)                                             

and             ̅     =    ̂      +    ̂      +    ̂         (6)   

 

4.7.3 The concept of Displacement Current 

The idea of a displacement current was introduced into the Ampere’s law by James Clerk  

Maxwell to cater for the magnetic field existing in a region of space where there is no 

possibility of a conduction current taking place, such as in a vacuum or free space. An 

example is the vacuum or dielectric space between the two plates of a parallel-plate capacitor. 

A displacement current exists during the process of charging the capacitor. As shown in Fig. 

4.8, the relation between the charge, Q, capacitance, C, and the potential, V, of a parallel-

plate capacitor at an instant of time is given by, 

          Q  =  CV        (1)   
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      A       +Q     

  V E D d     

                                    -Q 

Fig. 4.8: Capacitance of a parallel-plate capacitor 

Since current ,  i  =   
  

  
         (2) 

We have the displacement current, 

                                =     
  

  
 =   C 

  

  
      (3) 

But             C  =   
   

 
         (4) 

where A is the area of the plate and d is the plate separation. 

                                                 =     
   

 
 
  

  
       (5) 

Also,                                  V  =  E d                  (6)

         

     

                                                 =     
   

 
  

  
(Ed)  =        

  

  
             (7) 

Again, the displacement current density D is related to the electric field intensity E 

by, 

    D   =              (8) 

                                         =     A  
   

  
             (9) 
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But,           =     ∬   dS  =        A      (10) 

where       is the displacement current density through the area A. 

Combining eqns (9) and (10), we have, 

         
   

  
          (11)

  

Ampere’s law is now modified, or generalized, to include conduction and 

displacement currents through a conducting dielectric medium, and is written as, 

   ∮  ̅ .   ̅̅ ̅  =   ∬    ̅     
   ̅

   
 ) .   ̅̅̅̅     (12) 

where    ̅  is the conduction current density. 

In differential form, Maxwell’s equation derived from Ampere’s law becomes, 

        ̅   =    ̅  +   
   ̅

   
      (13) 

or,                  ̅   =     ̅  +    
   ̅

   
     (14)  

where    is the conductivity and   the permittivity of the medium. 
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4.8  Inductors and Inductances 

The resistor, capacitor and inductor, are the commonest electrical components employed in 

electrical circuits and systems. While the resistor is an energy dissipator, the capacitor and 

inductor are energy storage devices.  An inductor is a magnetic counterpart of a capacitor. 

While a capacitor stores energy in an electric field, the inductor stores it in a magnetic field. 

Examples of inductors are wire loops, coils and solenoids. 

Figure 4.8 is a typical solenoid inductor with a number of turns of wire wound round a solid 

former such as ceramics, plastics, glass, fiber, paper or wood. At times, the solenoid may not 

be wound round any solid material and air will be the medium inside it; the wire will, of 

course, be of reasonable stiffness. 

                     
I I

N turns

N SLines of flux

current

 

                Fig. 4.8: solenoid with lines of magnetic flux  

the lines link all the turns of wire, the total magnetic flux linkage,  , of the coil is equal to the 

total The magnetic lines of flux produced by a current in a solenoidal coil form closed loops. 

Each line that passes through the solenoid as shown in Fig. 4.8 links the current N times, 

where N is the number of turns of wire of the solenoid. 

If all magnetic flux,   , through the coil times the number of turns, 

   i.e.,      =  N         (1) 

By definition, the inductance, L, is the ratio of     to the current I, 
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   i.e.,  L  =  
     

 
  =  

    

 
      (2) 

This definition is satisfactory for a medium with constant permeability, such as air. However, 

the permeability of a ferrous material such as iron or cobalt is not constant; in this case the 

inductance is defined as the ratio of the infinitesimal change in flux linkage to the 

infinitesimal change in current producing it,  

   i.e.,  L  =  
  

  
       (3) 

The inductance of an inductor can be calculated from the geometry of the inductor. The 

following are typical of the common inductors in use in electrical circuits and systems: 

4.8.1 Long solenoid  

   

                                                      L   =  
    

 
 

N  =  Number of turns 

A  =  cross-sectional area of solenoid 

   =  permeability of the medium 

    =  length of solenoid 
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4.8.2  Toroid 

R
N turns

                          

L  =   
     

  
 

 r  =   radius of the coil 

 R   = radius of the toroid 

 

4.8.3  Co-axial cable 

L  =  
   

  
      

 

 
 

a  =  radius of inner conductor 

b  =  inside radius of outer conductor 

l  =  length of cable 
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 4.8.4  Two-wire transmission line 

    L  =  
    

 
     

 

 
 

   a  =  radius of conductor 

  D= spacing between centres of conductors 

 

5.0   TIME-VARYING ELECTRIC AND MAGNETIC FIELDS: 

FARADAY’S LAW OF ELECTROMAGNETIC INDUCTION. 

A p   ’    w         h      u     -carrying conductor produces a magnetic field. About 

1831, Michael Faraday, an English physicist, discovered a reverse effect such that a 

changing magnetic field could produce    u                      u    F     y’    w 

explains the working principles of most of the electrical motors, generators, 

transformers and inductors in use in electrical engineering today. 

A    p      u          f F     y’    w         p  f w    w  h   b                 

towards or away from the loop such that the magnetic flux of the bar magnet induces a 

current in the loop. When the bar magnet moves towards the loop, the induced current 

moves in one direction, but when the magnet moves away, the current flows in the 

opposite direction. In either case, the induced current flows in a direction such that the 

   p’           f ux  pp      h    f  h          h   p   u        By         h         

alternately towards or away from the loop, an alternating current (ac) is induced in the 

loop; which is the simple principle of the ac generator. 



92 
 
 

The fact that the induced current in the loop is always in such a direction as to oppose 

the change in flux producing it is a statement accredited to Heinrich Lenz who first 

    b   h                 w k  w     L  z’    w  

B  h F     y’      L  z’    w         b     to give the relation, 

    e  =  - 
   

  
         (1) 

where,   e  =  emf induced in the loop,  (V) 

       =  magnetic flux producing e  (Wb) 

     t  =  time (s) 

If, instead of a single loop of wire, there are N turns linked by the same flux, the 

resulting emf is multiplied by N. 

Consider a simple arrangement of a loop of wire linked by a magnetic induction,  ̅, as 

shown in Figure 4.9. 

    

 

B

Loop of wire

e

E

 

 

Fig. 4.9 Open-circuited loop with emf induced at its terminals 
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The induced emf, e, can be associated with an electric field,  ̅, whose line-integral over 

the circumference of the loop is equated to, e, 

   i.e.,   e  =  ∮  ̅ .   ̅      (2). 

(Note: the gap separation on the loop is negligible). 

The total magnetic flux through the loop is also expressed as , 

        =  ∬  ̅.   ̅̅̅̅        (3) 

where the surface over which the integration is carried out is the surface bounded by 

the periphery of the circuit. 

Combining eqns (1) and (3), we may write, 

  e  =  - 
 

  
∬  ̅ .   ̅̅̅̅        (4) 

Now, consider the situation where the loop or closed circuit is fixed or stationary but 

the flux changes with time, eqn(4) reduces to, 

      =  -∬
  ̅

  
 .   ̅̅ ̅       (5) 

which is sometimes referred to as the transformer induction equation. 

Combining eqns (2) and (5), we have, 

      =   ∮  ̅ .   ̅  =  -∬
  ̅

  
 .   ̅̅ ̅     (6) 

Again, consider a situation where the flux,  ̅, is constant, but the loop or closed circuit is 

in motion, this also gives rise to an induced emf, which can be deduced from the Lorenz 

force equation, where the force,  ̅ on an electric charge, Q, moving with a velocity,  ̅, in a 

magnetic field of induction, ̅, is given by, 

    ̅  =  Q( ̅    ̅)      (7) 

Or, the electric field intensity,  ̅, is given by, 
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    ̅  =  
 ̅

 
  =  ( ̅    ̅)      (8) 

Eqn (8) may be applied to determine the induced emf in a circuit moving through a a 

magnetic field of induction,  ̅, and we may write, 

       =  ∮  ̅ .   ̅  =  ∮  ̅     ̅  .   ̅    (9) 

which is termed the motional induction or the flux-cutting induction. 

In a general sense, eqns (6) and (9) are combined to account for both kinds of changes 

occurring simultaneously, i.e, when the loop or circuit is in motion and B changes in 

time, to give the total induced emf as, 

  e  =      +      =  ∮  ̅     ̅  .   ̅ -  ∬
  ̅

  
 .   ̅̅ ̅     (10) 

Example 1. 

 Consider a rectangular loop of wire of area A and a magnetic flux density B at right 

angles to the plane of the loop, uniform over the area of the loop. Assume the magnitude 

of B varies sinusoidally with respect to time, i.e., B  =     cos   , determine the emf 

induced in the loop. 

Solution: 

 This is a case where the loop is constant or stationary, and the flux is varying. So, we 

apply eqn(6) where 

   e  =  -∬
  ̅

  
 .   ̅̅ ̅  =  A    sin    

Example 2 

Consider the case where the flux density is constant over a rectangular loop of constant 

width but whose length is increased uniformly with time with a velocity, u. 

Solution: 

Here, eqn (9) is applicable, i.e., 
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   e =  ∮  ̅     ̅  .   ̅ 

Example 3: 

Consider a rotating rectangular loop in a steady magnetic field. Let the loop rotate with 

a uniform angular velocity   radians per second. This is a typical arrangement of a 

simple ac generator    (see Fig. 8-8, p.331 of Kraus). 

Solution: 

Again, apply  e =  ∮  ̅     ̅  .   ̅  =  2uB sin    =  2         , where R is the radius of 

the rotating loop and   is its length. Note: u =     
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6.0   MAXWELL’S EQUATIONS 

6.1.   GAUSS’S LAW: ELECTRIC FLUX  

Integral Form 

   ∮  ̅   ̅̅ ̅  ∫    
 

 

 

 

                                                             

Differential Form 

   ̅                                                                             

6.2.   GAUSS’ LAW: MAGNETIC FLUX 

Integral Form 

   ∮  ̅   ̅̅ ̅
 

 

                                                         

Differential Form 

   ̅                                                                      

6.3.   AMPERE’S LAW 

Integral form 

    ∮  ̅   ̅       ∮ ( ̅  
  ̅

  
)    ̅̅ ̅                                       

 

 

 

Differential Form 

   ̅     ̅  
  ̅

  
                                                            

6.4.   FARADAY’S LAW 

Integral Form 
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   ∮  ̅   ̅       ∫
  ̅

  
   ̅̅ ̅                                         

 

 

 

Differential Form 

   ̅   
  ̅

  
                                                              

6.5  OTHER EQUATIONS 

Other equations and relations that are applicable for solving electromagnetic 

problems are: 

 ̅    ̅              h      w      p                                             

                                        ̅   
  

  
                                                                                          

 ̅    ̅                                                

           p      h                      f                                               

 ̅    ̅   ̅                                                                       

wh    F̅     h  F            u                                f      f f ux       y B̅        

 ̅    ̅                                                                                   

     ̅    ̅                                                                               

F       ̅     ̅   ̅   ̅                                                         

                                                                                        

 

 ̅            u            y   /   

              u    h           y  /   

      u      y  f     u   S/m 
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  p          y  f     u        

  p     b    y  f     u        

v = velocity of charge in electric and magnetic fields 

7.0.    WAVE PROPAGATION IN FREE SPACE,         

 

x

y

z

Ey

zH

 

Fig. 7.1 Alignment of E and H fields 

 

 

 

 
                𝐻  

𝜕�̅�

𝜕𝑡
                                           

Assume �̅� is aligned along y-direction and 𝐻 is 

aligned along z-direction, with both varying with 

time along x-direction, as shown in Fig.7.1. Apply 

Ampere’s law in differential form: 

The components of   𝐻 and 
𝜕�̅�

𝜕𝑡
 applicable are: 
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From Equation 4.7.2 (5)  

 ̂ (
   

  
 

   

  
)   ̂ (

   

  
 

   

  
)   ̂ (

   

  
 

   

  
)                          

                                                      
 

  
   ̂      ̂        ̂                         (2)  

and with 

    =     =  0;        
 

  
  =  

 

  
  =  0        (3) 

we have,                                              ̂ ( 
   

  
)   ̂ 

   

  
                                                         

or 

   

  
   

   

  
      

   

  
                                                

Also, from      ̅ we have, 

                          ̅   
  ̅

  
                                                              

 ̂ (
   

  
 

   

  
)   ̂ (

   

  
 

   

  
)   ̂ (

   

  
 

   

  
)                                         

      =          
 

  
   ̂      ̂        ̂              (7)      

and with 

    =     =  0;        
 

  
  =  

 

  
  =  0  
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 ̂ (
   

  
)     ̂  

   

  
                                                          

or 

   

  
   

   

  
    

   

  
                                                     

By differentiating Equation 5 with respect to t and Equation 9 with respect to 

x, we can eliminate Hz component: i.e. 

 

  
(
   

  
)      

    

   
                                                               

   

 

  
(
   

  
)  

    

   
                                                            

or  

 

  
(
   

  
)    

 

  

    

   
                                                          

The LHS of Equations 10 and 12 are the same, therefore: 

   

    

   
   

 

  

    

   
                                                             

or                                       
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Similarly,    component can be eliminated from equations 5 and 9 to give: 

       

                        
    

   
  

 

    

 
    

   
                                                        

Equations 14 and 15 are well-known wave equations, which have similar 

solutions in    and   , electric and magnetic field components, respectively. 

Equations 5 and 9 show the interrelationship of the electric and magnetic 

fields. The wave equations describe the motion of the electromagnetic wave as 

a function of time and space, propagating along the x-direction. 

Quiz: Given that                  is a solution of the wave equation (14), 

where    and c are constants, show that   
 

√    
 and calculate the value of c, 

with    = 4         H    and       8.854         F   . 

A general solution for equation 14 is 
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Where   
  

 
,  called the phase constant and   = wavelength of the sinusoidal 

wave 

Equation 16 may also be written as 

                                                                          

where       
   

 
 = 

      

 
 =    ,   f = frequency of the wave 

     p   u    f  h  w    

(The sine term could also be replaced by cosine, i.e. 

                               is also a solution of the wave 

equation.) 

Equation 16 represents two waves travelling in opposite directions; the first 

term is associated with a wave travelling in the –ve direction while the second 

term is a wave travelling in the +ve x-direction. 

Another form of the solution can be written as an exponential function: 
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Fig. 7.2 illustrates the wave nature of the electric and magnetic fields 

propagating in space 

y

z

x

Ey

Hz

H 0

E 0

 

                 

                 

Both    and    are synchronized oscillations propagating at the speed of light 

through vacuum (or free space). The oscillations of the two fields are 

perpendicular to each other and perpendicular to the direction of motion (x-

direction in this case). 

Figure 7.2: Forward travelling E and H waves 
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Electromagnetic waves are, therefore, self-propagating transverse oscillating 

waves of electric and magnetic fields. The electric and magnetic fields are in 

phase with each other, reaching maxima values together. 

7.1   CHARACTERISTIC IMPEDANCE 

Consider the forward travelling E- and H- waves,  

                                          

Apply Equation 7.0.(9), 
   

  
    

   

  
  to give 

                                

      
  

  

   

 

 
         

  

√    

 √
  

  

                                      

   is called the characteristic impedance or intrinsic impedance of the 

medium. 

   (for air) = √
       

 

       

 √               or 377   
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7.2.   TRANSMITTED POWER: POYNTING VECTOR 

The vector quantity  ̅   ̅   ̅ is the instantaneous power density ( /  ) 

transmitted by the electromagnetic wave in the direction of propagation, (x-

direction). 

Average power density,     
 

 
                                                                 

    
 

 
     

 

 

  
 

  

 
 

 
  

      (
 

  
)                                           

Problem: Assignment 1  

The earth receives 2.0      cal min-1 cm-2 of sunlight. 

(a) What is the Poynting vector in   /   ? 

(b) What is the power output of the sun in sunlight assuming that the sun 

radiates isotropically? 

(c) What is the rms electric field E at the earth assuming that the sunlight is all 

at a single frequency? 

(d) How long does it take the sunlight to reach the earth? 

(Take the earth-sun distance = 150         m,    1W = 14.3        cal min-1)    
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8.0 Wave Propagation in a conducting medium: The skin 

effect 

The wave equation for an electromagnetic wave propagating in a conducting 

medium is derivable from Maxwell’s equations. The relevant equations are as 

follows: 

 
   

  
   ̅  

  ̅

  
                                                                    

and  

   

  
   

  ̅

  
                                                                       

Noting     ,        ,   B    and expressing the E and H components 

propagating in x-direction as       
          similarly for the    component, 

equations (1) and (2) become: 

 
   

  
      

   

  
                                                               

or  

   

  
                                                                       

and 
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Differentiating equation (5) with respect to x and substituting equation (4), we 

have 

    

   
     

   

  
                                                       

    

   
                                                                              

                                                                                              

where   is the propagation constant, a complex parameter with real and 

imaginary terms expressed as 

                                                                                         

  = the attenuation constant in neper m-1 and  = the phase constant in radian 

m-1. 

A solution of equation (8) for a wave travelling in the positive x-direction is,  

      
       

                                                       

(suppressing the      term ) 

For a wave travelling in a conducting medium where the conductivity   

  , equation (7) is approximated to 
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or                                                                                                                      

  √                                                                                   

Using the fact that 

     √  
   

√ 
                                                                                                    PROVE!!  

we find that the real and imaginary parts of   are obtained by writing, 

  √
   

 
    √

   

 
                                                               

with      √
   

 
    and     √

   

 
                                                      

Equation (10) becomes 

      
 √

   
 

 
 

  √
   

 
 
                                                            

or 

      
 

 
     

 
                                                                            

where   √
 

   
            √
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8.1 Skin depth 

 

Equation (18) implies that the amplitude of the wave decreases exponentially 

as it penetrates into a conducting medium by a factor  
  

 ⁄  .  

When x    , the wave decreases by a factor     or 
 

 
 

 

     
                   of 

its value upon entering the conducting medium as illustrated in Figure 8.1 

below: 

E0

Ey

 

Fig. 8.1  Wave attenuation in a conducting medium 

   is called the depth of penetration or the skin depth of the wave inside the 

conductor. 

𝑥

𝛿
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To give a quantitative value of  , consider a good conductor such as copper, 

and electromagnetic wave in the microwave range of frequency, say, 10 GHz. 

For copper,                                      

At         , 

  √
 

   
  √

 

     
 

 

√     
                                           

                          
 
  

           

      = 0.66 μm 

Since       
 

√ 
 , the depth of penetration is even smaller at higher frequencies 

and higher at lower frequencies. For instance, at         ,       

       

This very low depth of penetration makes a conductor a good protective 

shield for any equipment inside a conducting enclosure from an external 

electromagnetic field. A practical illustration is the fact that a car with a built-

in radio receiver will have practically no reception inside the car unless it is 

connected to an external whip antenna to intercept the radiowave from 
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outside, since the receiver is practically inside a metal enclosure. Likewise, the 

outer conductor of a coaxial cable acts as a shield to the inner conductor and 

prevents an external interfering signal from entering the cable.  

 

9.0.  Transmission Lines 

9.1.   INTRODUCTION  

A transmission line is a pair of electrical conductors carrying an electrical 

signal from one point to another, such as power line, coaxial cable, pair of 

wires (twisted or untwisted) used to connect domestic appliances or 

laboratory equipment, telephone lines, etc. The line can carry dc or ac voltages 

and currents at different frequencies. In many electrical circuits operating at 

low frequencies, the length of the wires connecting the components may be 

ignored; the voltage on the line at a given time may be regarded as constant 

along the wire. However, at very high frequencies, the wire length may 

become important and the behaviour of the wire may affect the signal being 

transmitted. 
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For the purpose of analysis, an electrical transmission line may be modeled as 

a two-port network, with one port (input port) connected to the source of 

power and the other (output port), connected to the load, as shown in Fig. 9.1 

 

Tx line

Z 0

Z s

Vs

Z L

(A)

 

 

 

 

 

Z0

Z s

Vs
Z L

(B)

 

 

  

2-wire line 

Coaxial cable 

Figure 9.1 Transmission lines 
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In the simplest case, the network may be assumed to be linear, i.e. the 

complex voltage between the pair of wires is proportional to the complex 

current flowing in the wire. If the transmission line is uniform along its 

length, then its behaviour is largely described by a single parameter, called the 

characteristic impedance,   , of the line. This impedance is the ratio of the 

complex voltage of a given signal to the complex current at any point on the 

line when there is no reflection at the load back to the source. Typical values 

of    are 50   or 75   for coaxial cable, about 100   for a twisted pair or about 

300   for a common type of untwisted pair used in radio transmission. 

When sending power down the line, it is usually desirable that as much 

power as possible will be absorbed by the load and as little as possible 

reflected back to the source. When the load impedance is made equal to the 

characteristic impedance,   , there will be no reflection; the line is then said 

to be matched. 

Some of the power fed into the line will, of course, be lost due to the resistance 

of the wire (resistive or ohmic loss). At high frequencies, some loss could 

occur through the dielectric material (dielectric loss) inside the transmission 

line.  
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9.2.   TRANSMISSION LINE MODEL 

The model used is to regard the transmission line to be made up of resistance 

and inductance uniformly distributed along the length of the line; capacitance 

and conductance also uniformly distributed within the dielectric material 

separating the conductors of the line. 

A small length,   , of the line may, therefore, be represented by a network as 

shown in Fig. 9.2: 

Gdx

Ldx

Cdx

Rdx

 

         

where  ,  ,   and G are the resistance, inductance, capacitance and 

conductance, per unit length, respectively. i.e.         ,         ,   F      

and          or ohm m-1, henry m-1, farad m-1 and siemen m-1, respectively. 

These are called the primary constants of the transmission line. 

Figure 9.2 Network representation of transmission line 
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𝐼𝑥  
𝜕𝐼𝑥
𝜕𝑥

𝑑𝑥 

𝑉𝑥  
𝜕𝑉𝑥
𝜕𝑥

𝑑𝑥 

Figure 3 

9.3.   WAVE EQUATIONS 

Consider a length, dx, of the line with voltage, V, across the line and current I, 

on the line, as shown in Fig. 9.3: 

Gdx

Ldx

Cdx

Rdx

Vx

Ix

 

 

Assuming V and I vary with time, t, according as        the relationship   

between the voltage and current, applying Kirchhoff’s laws, can be expressed 

as:   

   
  

                                                                         

   
  

                                                                         

Differentiate equation (1) with respect to x and substitute equation (2), we 

have, (dropping the subscript x for simplicity), 

   

   
                                                                    

Figure 9.3 Voltage and Current variation on the line 
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Similarly, by differentiating equation (2) with respect to x and substituting 

equation (1), we have, 

   

   
                                                                    

Equations (3) and (4) may be rewritten, respectively, as: 

   

   
                                                                                    

   

   
                                                                                    

where 

                                                                                

or 

  √                                                                            

  is called the propagation constant of the line. It is a complex quantity which 

may be expressed as: 

                                                                             

where   is called the attenuation constant in neper m-1, and  , the phase 

constant in radian m-1, is the imaginary part of the propagation constant. 
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9.4.   LOSSLESS LINE 

When R and G are negligibly small (i.e.             at high 

frequencies), or       (ideal situation), the line is regarded as lossless. No 

energy is dissipated by way of heating on the line. 

Equations (9.3.3) and ( 9.3.4) become: 

   

   
                                                                     

   

   
                                                                       

  where                   √                                                                (3) 

i.e           

                            √                                                                         

9.5   PHASE VELOCITY,   

To investigate the velocity at which a signal propagates down the line, we 

may consider a solution to the wave equation (9.4.1) as: 

                                                                            

For a given point on the wave to maintain its constant phase angle, we take,  
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Differentiating equation (2) with respect to time, t, we have 

 

  
                                                                        

or  

   
  

  
                                                                 

The phase velocity,   
  

  
 

 

 
 

  
 

 
  

 

 √  
 

 

√  
                                                        

       
 

 
  

   

  
 ⁄

                                     

9.6.   GENERAL SOLUTION TO THE WAVE EQUATIONS (9.4.1) 

AND (9.4.2) 

If we assume a solution to equations (9.4.1) and (9.4.2) in phasor notation as: 

                                                                               

and  

                                                                                 

(suppressing      f     ),  
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we can determine   ,    in terms of        by differentiating equation (1) to 

give:  

  

  
                                                                   

From equation (9.3.1), we have 

   
 

   

  

  
        w  h                                                          

        
 

   
{                      }                                       

 
  

   
         

  

   
                                                          

                                                                                        

                                    
 

  
                                                                              

     
 

  
                                                                          

Equations (1) and (2) or (6) represent two waveforms for voltage and current, 

respectively, travelling on the line. The first term,         , or         travels 

from the generator to the load, while the second term represents the reflected 

wave from the load to the generator. 
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At any given point x on the line the two waves, incident and reflected, add up 

to produce a standing wave on the line. 

9.7.   CHARACTERISTIC IMPEDANCE,    

Focusing on the forward-travelling wave, 

                                    w                                     

               
 

  
                      u                      

The characteristic impedance,   , is defined as, 

     
  

  
      

  

 
     

  

 √  
    √

 

 
                                                  

Rewrite equations (1) and (2) to include     

                                                                                 

    
  

  

                                                                          

9.8. VOLTAGE REFLECTION COEFFICIENT,   , AND CURRENT 

REFLECTION COEFFICIENT,    

Figure 9.4 represents forward-travelling or incident as well as backward-

travelling or reflected voltage and current wave. 
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 𝑉  𝐼  𝑒 𝛽𝑥 

 𝑉  𝐼  𝑒𝛽𝑥 

 

ZL

X=0
 

 

Take distance measurement from the load end, where    . 

Incident voltage =    ; reflected voltage =    

Incident current =    
  

  
 ;  reflected current =     

  

  
 

The load impedance,   , is given by: 

      
     

  

  
 

  

  

  (
     

     
)                                        

The voltage reflection coefficient,    is defined by 

        
   

  
                                                      

Divide the numerator and denominator of equation (1) by   , to give 

Figure 9.4 Incident and Reflected waves 
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or  

        
     

     

                                                                  

The Current Reflection Coefficient,    , is: 

    
  

  
    

  

  
                                                           

i.e. the Current Reflection Coefficient is of the same magnitude, but 1800 

out of phase with the Voltage Reflection Coefficient,    . 

Note the following special situations: 

(a) When       ,     , no signal is reflected from the load; the line is said 

to be matched. 

(b) If the line is open-circuited,              ;  the reflected voltage at the 

load is equal to the incident voltage in magnitude and phase. 

(c) If the line is short-circuited,       ;         .  The reflected voltage is of 

the same magnitude as the incident voltage, but 1800 out of phase with it. 
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9.9.   THE IMPEDANCE,   , AT ANY POINT x ON THE LINE 

   
   

   
 

              

  

  
      

  

  
    

                                               

or 

     *
                                 

                                 
+                      

Divide numerator and denominator by    and  cos   , we have,  

     0
           

  

            

           
  

            
1                               

Noting equation (9.8.3) that 

  

  

 
  

  

  

  
  

  

 

 equation (3), after a few simplifying steps and expressing distance x from the 

load end, results in a simpler, more familiar expression,  

     [
           

           
]                                                        
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9.10.   VOLTAGE STANDING WAVE RATIO, (VSWR). 

The incident and reflected voltage waveforms add up to give a standing wave 

on the line, with maximum and minimum values as shown in Figure 9.5  

ZL

Vmax

Vmin

0Z

 

   Fig. 9.5 Voltage Standing Wave on the line 

                                                                             

                                                                             

The voltage standing waves ratio, S, is defined as 

  
    

    

  
     

     
 

    

    

                                                  

Divide the numerator and denominator by   , we have 

    
  

  

  

  
  

  

   
  |  |

  |  |
                                                       

or  

|  |   
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Example 9.10.1  A transmission line having a characteristic impedance of 50   

is terminated with a load of 100 + j 100   . Calculate (a) the voltage reflection 

coefficient (b) the VSWR. 

                 
     

     

    
              

               
   

       

        
 

                        
              

             
                      

|  |  =  0.62,     VSWR = 
    |  |

      |  | 
 =  

    

    
  =  4.2 

 

Example 9.10.2 A lossless transmission line has characteristic impedance of 75 

Ω and phase constant of 3 rad m-1 at 100 MHz frequency. Calculate the 

inductance and capacitance per metre of the line. 

Solution:        = √
 

 
             = ω√    =  2πf√          

    

   
  = 

√
 

 
  

   √          
  =  

 

    
             

        
  

   
 = 

  

 
  =  

 

    
           f =    Hz 

     C  =  6.37 x        F     ;     L  = 358 x     H      
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𝜆/  

𝑍𝐿  
   Ω 

9.11   THE QUARTER WAVE (  ⁄ ) TRANSFORMER 

When a transmission line is terminated by a load    whose value is different 

from the characteristic impedance,   , of the line, there is a mismatch, and 

reflection of voltage occurs at the load.  

By inserting another line of characteristic impedance    which is   ⁄  (one-

quarter wavelength) long between the line and the load, a matching condition 

can be provided. See Figure 9.6: 

Z 1Z 0

A B

 

   Fig. 9.6     ⁄  – wave matching transformer 

To calculate the value of     we make use of equation (4-9-4): 

     [
           

           
]                                                        

( Note that    above corresponds to     of equation (4.9.4) and      

corresponds to   ) 
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𝑍𝐿      𝑗  Ω 
𝑍𝑥  

   Ω 

Now,          (
  

 

 

 
)     

 

 
    

By dividing the numerator and denominator by tan 
 

 
 , we have, 

     

     

   

  
  

 

  

                                                            

or    √                                                                      

i.e. the 
 

 
 line has a characteristic impedance value which is the geometric 

mean of the impedances at its input and output ends. 

Suppose the signal on the line is of frequency 100 MHz, the wavelength,  , 

is calculated from     , or   
 

 
  

     

      
     .    or  

 

 
        

Any length, shorter or longer than 0.75 m will be a mismatch resulting in 

some reflected wave. 

Example 9.11.1: Let a 
 

 
 – line be inserted between a line of characteristic 

impedance of 100   and the load of 400 + j 0  . 

Z 1

A B

 

   √         √                     
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Example 9.11.2: A  
 

 
 – line of characteristic impedance of 60   is terminated 

with    .   Determine       when  (i)    = 0   (ii)     =      (iii)    = 60      

Comment on the results obtained. 

Solution:  From equation 9.9.1, we find that for a 
 

 
 – line,  

         (
  

 

 

 
)     

 

 
   . 

Therefore, when  

(i)    = 0,      =    (
   

   
) =  

  
 

  
    =   ; 

(ii)    =     ,      =  0; 

(iii)    = 60  ,        =  60  , 

 

Comment: Under conditions (i) and (ii), we find that a short-circuited line 

appears at the input of the line as an open-circuited line, while an open-

circuited line appears as a short-circuit. 
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Under condition (iii) a line terminated by its characteristic impedance has 

its input impedance of the same value; a condition for a matched line, 

whether or not the line is 
 

 
  in length. 

Note also that for a short-circuited line, 

     s/c   =   
      

        

   
   = j                     

     o/c  =     (
   

         
)  =  - j   cot    

     s/c        o/c   =                                 =    
 

 

    =     √      /          /     

This is a way of determining the characteristic impedance of a 

transmission line. 

9.12. THE SMITH CHART IN SOLVING TRANSMISSION LINE 

PROBLEMS 

The solution of transmission line problems often involves lengthy numerical 

calculations, especially when complex numbers are involved. P.H. Smith has 

devised a simple and quick graphical solution to such problems to ease the 

rigour of calculation. 
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The Smith chart consists of a family of circles representing normalized 

impedances (or admittances), both real and imaginary values, plotted on a 

polar coordinate chart. The normalization is done by dividing the impedances 

by the characteristic impedance.  The normalized impedance is located at a 

point within the chart, while the radial distance from the centre of the chart to 

that point gives the magnitude of the reflection coefficient, |  |, and also the 

VSWR relating to   . The angle which the radial line makes with horizontal 

line represents the phase angle of   . The distance from the load of a given 

input impedance is simply read off the chart circumference which is labeled in 

wavelengths.  

When the line is not matched, a matching line stub is often attached to the line 

at a given distance from the load and the length of the stub adjusted to 

provide the matching. The chart is used to determine the point of attachment 

of and the length of the stub. 

The following problem will illustrate the usefulness of the chart. 

 

Example 9.12.1:   A lossless 50  transmission line is terminated in    

      . Find 
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𝑍𝐿     𝑗   Ω 

   𝜆 

  Ω 𝑧𝑥 

(a) the voltage reflection coefficient 

(b) VSWR 

(c) the impedance 0.3  from the load. 

 

 

Solution:    By calculation: 

A B

 

(a)   

      
     

     

    
         

         
       

           
       

      
           

          
       

      
   

      

      
   

                         
         

    
               

                           √                       
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(b) VSWR = 
      

      
  = 

    

    
   =  4.26 

(c )          *
           

           
+     
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9.12.1   USING SMITH CHART 

Normalized load impedance  
  

  
  

  

  
          

 

0.5+j1.0

D

E

G

P

0.28-j0.4

 

Locate point P (0.5+j1.0) on the chart 

Join the centre of circle, point O, to P and project to cut the circumference of 

the circle. Use scale on ruler to determine the radius, R of the circle and the 

length OP. Length OP is called the Load Line. 
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Read the angle OP makes the horizontal axis, on the right hand side.   

| |  
  

 
 

      

      
                                                                             

Measure length OP on the horizontal axis. It cuts the real axis at point C (= 4.2) 

which is the value of the VSWR .                        VSWR= 4.2 

OP projected cuts the circumference at point D, which is at 0.135  from the 

negative horizontal line. Add 0.30  to 0.135  (clockwise, i.e. toward the 

generator) to obtain 0.435 . Locate 0.435  on the circumference, (point E). Join 

O to E, and measure length OP along OE, to reach point G. Read  the value of 

the normalized impedance at G (= 0.28 – j0.40).  

The impedance,                      = 14-j20  .  

[Note, instead of measuring along OP, OC, OG,  etc, a protractor could be 

used to draw a circle, centre O, radius OP, to join points P, C and G. This circle 

is called the VSWR-circle]. 

You can now see how much easier it is to use the Smith Chart for the solution 

of transmission line problems. Get used to it!! 
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9.13    STUB MATCHING ON TRANSMISSION LINE 

A given transmission line with characteristic impedance may be matched to a 

load    (= R + jX) by inserting a single stub between the line and the load, as 

shown in Fig. 9.6: 

Z
L

Parallel 
stub

Short circuit

Load to be 
matched

B

B

Z 0

d

l

 

Fig. 9.6 Stub matching on transmission line 

 

A stub is a short section of transmission line (short-circuited or open-circuited 

at the far end) whose input impedance at the connection point (BB as shown) 

can be changed by varying its length, l. The matching position, d, from the 

load is also changed appropriately to obtain the matching condition. 
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For parallel stub-matching, it is more convenient to use admittance rather 

than impedance for ease of calculation. Note that admittances in parallel are 

added to obtain equivalent admittance, as for impedances in series. 

In the Smith chart, any point reflected through the centre point converts an 

impedance to an admittance, and vice versa. 

For example, consider a normalized impedance z = 1.8 + j 2.0. Its 

corresponding normalized admittance is, 

 y   =   
 

 
   =  

 

         
  =  

 

         
  x     

         

         
  =  0.25 – j 0.28 

Check these two values of z and y on the Smith chart. The y-position is the 

reflection of the z-position through the centre point of the chart! 

Transmission line matching by means of a single short-circuited stub is better 

explained by a worked example, as follows: 

Example 9.13.1   A lossless 50 Ω transmission line is terminated in 25 + j 50 Ω 

load. Determine the point from the load at which a single 50 Ω short-circuited 

stub is to be attached and the length of the stub to provide matching of the 

line to the load. 
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𝑍     𝑗   

𝑧      𝑗    

𝑦      𝑗    

   Ω    Ω 

   Ω 

Solution 

B

B

d

l

 

Locate the position of z (normalized value of Z) on the Smith chart,        

      

Reflect this point through the centre to reach Py, (the normalized admittance 

point) = 0.4 – j0.8 

[Check the result by calculating 

  
 

 
 

 

        
 

  
 

        
  

        

        
              

With radius OPz = OPy, draw the line OPy’ from the centre which intercepts the 

circle x = 1. 
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l

d

P y

Pz

‘

Py

A

B

C

D

 

With radius OPz = OPy, draw the line OP’y from the centre which intercepts the 

circle x = 1 at P’y 
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The radial distance A to B (which are the projections of OPy and OP’y 

respectively, to the periphery of the chart) in a clockwise direction gives the 

value of d, in wavelengths. 

d = (0.5 – 0.384) + 0.178 λ  =  0.294 λ 

The admittance value at P’y  = y = 1.0 +j1.6, is the admittance of the line at point 

BB, where the stub is connected, due to the load. 

If the stub length, l, is now adjusted to give a normalized admittance of 

-j1.6 at BB, the total admittance at BB will now be 1.0 + j1.6 – j1.6  = 1.0+j0 and 

the line is matched. This corresponds to a move from the short-circuit end of 

the stub where the admittance is infinite, point C, to the point P’’y,  projected to 

point, D, at the periphery of the chart where y = -j1.6. This gives the length of 

the stub as l = length CD on the chart. 

 l = (0.34 – 0.25) λ   = 0.09 λ 

which corresponds to the distance C to D on the chart. 

The values of, d, and, l, in metres can be calculated if the frequency of the 

signal is given, from:      λ (m) = 
       

      
 

Suppose the frequency is 1 GHz ( =     Hz),   λ = 0.3 m;  
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d = 0.294 x 0.3 = 0.088 m, or 88 mm  

and l = 0.09 x 0.3 = 0.027 m, or 27 mm. 
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10. ANTENNAS 

 

10.1   INTRODUCTION 

The transmission and reception of electromagnetic waves for radio 

communication are provided by radiating elements known as antennas. The 

antenna is an efficient transformer between free space and a transmission line. 

In effect, the antenna is an extension of the transmission line. The transmission 

line is used to guide electromagnetic waves from one location to another. In 

twin lines or coaxial cable, the waves are confined to the space between the 

conductors and little or no radiation of energy outside the conductors takes 

place, especially when the spacing between the conductors is a small fraction 

of the wavelength of the waves. If, however, the ends of a twin-line 

transmission line are flared out, the waves tend to be radiated out into free 

space. When the separation between the lines approaches the order of a 

wavelength or more, the opened-out lines act like an antenna. Initially, close 

to the antenna, the wave front is like an arc, changing gradually to a spherical 

shape as the distance from the antenna increases. See Figs. 10.1 (a) and (b).  



142 
 
 

Transmission line

Radiator

 

Transmission line

Radiator

 

 

 

There is a region of transition between the near-field region close to the 

antenna and the far-field, free-space or radiation field region. From the circuit 

point of view, the antenna appears to the transmission line as a resistance, 

called the radiation resistance, not a physical but a virtual resistance, 

coupling the transmission line to the free space in the case of a transmitting 

antenna, or coupling the free space to the transmission in a receiving antenna. 

The behavior of transmitting and receiving antennas is essentially reciprocal 

in nature except in their power handling capability. Most wireless 

applications employ the far-field or radiation field which begins at about ten 

wavelengths (10 λ) away from the antenna. The near-field is hardly employed 

Figure 10.1 (b)  

Figure 10.1 (a)  
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except for some special applications such as Radio Frequency Identification 

(RFID), or Near-Field Communication (NFC) which are somewhat new 

applications. Some manufacturers now build short-range near-field radio for 

applications such as wireless building access, ticket purchases or automotive 

functions. 

In most communications systems, the same antenna is used for both 

transmitting and receiving signals as in the transceiver systems. 

10.2 RADIATION FROM A SHORT DIPOLE 

A short dipole is, more or less, the “building block” of all antennas, since a 

practical antenna can be regarded as an assemblage of short dipoles. A short 

dipole is a short wire, compared with the wavelength of the radiation, 

energized at its centre and terminated in large capacitance into which current 

can flow. See Fig. 10.2. 
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At a distance, r, which is large compared to the wavelength, λ, the only field 

components are the electric field,    (at right angles to, r ) and the magnetic 

field,   , (at right angles to    and r). Both    and    are proportional to sin .  

   and      are at right angles in space and in  time phase, leading to a 

spherical wave propagated in r-direction. 

The ratio 
  

  
 (similar to the ratio 

    

      
 f               is the characteristic or 

intrinsic impedance,   , of free space, which is 120π or 377 Ω. 

The power radiated by the short dipole is given by, 
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 P  =              (1) 

where         = 80    (
  

  
)

 

       (2) 

is the radiation resistance of the dipole antenna. 

Eqn (2) indicates that the radiation resistance is proportional to the square of 

the length of the dipole. For instance, with dz = 
 

   
 λ,      = 0.079 Ω, and with 

dz = 
 

  
 λ,     =  7.9 Ω. 

To achieve a reasonable value of the radiation resistance, and, therefore, of 

radiated power, the antenna length must be a significant fraction of a 

wavelength. 

10.3  RADIATION FROM A 
 

 
 – DIPOLE 

Consider a dipole with a length h = 
 

 
  fed in the middle as shown in Fig. 5.3(a). 
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Fig. 10.3  

To determine the electric field strength at a distant point P(r,    from the 

source point, we need to consider the distribution of the current along the 

dipole. This may be compared with a transmission line of length h = 
 

 
 which is 

open-circuited at the end, as shown in Fig. 5.3(b). the current distribution on 

the transmission line is of a sinusoidal standing wave pattern. 

At a point, distance, z, from the input end, the current    can be expressed as, 

                                                                     

where     =  
  

 
        (4)  

The electric field at point P(r,    from the current distribution of eqn (3) is 

found to be,  
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,
     hh           

    
-                                      

   
  

  

                                                              

The radiation pattern, i.e., the plot of    as a function of  , is given by the 

factor in the curly brackets { }. This pattern, plotted in Cartesian coordinates is 

as shown in Fig. 10.4. 

    

               

 

 

 

 

 

 

Knowing the radiation pattern, the power radiated by the dipole can be 

calculated. 
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The resulting Poynting vector,    , is given by, 

    
 

 
    

             

where    
  is the complex conjugate of   . 

By taking the surface integral of      over the surface enclosing the antenna, we 

obtain the total power radiated by the antenna as, 

  ∬      
 

 
∬     

                                                 

10.4   PRACTICAL ANTENNA PATTERNS FOR MEDIUM WAVE 

BROADCASTING: MEDIUM FREQUENCY ANTENNAS (300 HZ TO 3 

MHZ FREQUENCY RANGE). 

Vertical grounded antennas are usually employed for medium wave 

broadcasting at frequencies below 3 MHz. The radiation pattern characteristics 

should be such as to confine the radiation to small angles close to the horizon. 

This is achieved when the ground surface in the neighbourhood of the antenna 

base is of good conductivity, so as to limit the amount of energy lost to the 

ground. Grounded galvanized steel towers are usually erected on the ground. 

Artificial grounding system consisting of buried radial wires at the base of the 

tower is employed where the ground is of poor conductivity. Vertical radiation 

patterns for such antenna are as shown in Fig. 10.5. 
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It is observed that as the electrical length of the uniform vertical conductor is 

increased, larger and larger portions of a complete sine wave of current is 

distributed on the antenna. The integrated electrical fields from all parts of the 

antenna, together with the ground reflected waves interfere to varying degrees 

to produce electrical field strengths that cover longer and longer path lengths 

on the ground surface, until elevated radiation patterns start to emerge, when 

the electrical length is slightly over half a wavelength. Between 
 

 
 and 

 

 
  the 

patterns flatten out on the ground with increasing coverage. The greatest field 

intensity along the ground occurs at 
  

 
 . Beyond this, ground coverage begins 

to shrink and high-angle lobes start to emerge. This is undesirable as the lobes 

produce sky-wave interference with the ground wave and is unsuitable for 

broadcasting. 

10.5   DIRECTIVITY, GAIN AND EFFICIENCY OF AN ANTENNA 

The radiation pattern of an antenna is the shape of the electromagnetic energy 

radiated from or received by the antenna. Most antennas have directional 

characteristics which cause them to radiate or to receive energy in a specific 

direction. The radiation pattern of a half-wave vertical dipole, for instance, has 

a figure-8 pattern in the plane of the antenna, or a doughnut shape in three 
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dimensions with the maximum radiation at right angles to the antenna, as 

illustrated in Figs. 10.6 (a) and (b), respectively. 

 

(a)              (b) (b) 

Fig.  10.6  Radiation Pattern of a half-wave vertical dipole 

 

The term, Directivity, or the Directive Gain D (     , of an antenna is defined 

as the ratio of the power density radiated in the (      direction at some 

distance in the far field of the antenna to the power density at the particular 

point if the total power were radiated isotropically. An isotropic radiator is an 

ideal situation; it is the reference antenna that radiates equally in all directions.  

The above definition implies that the directivity of an isotropic antenna is 

unity. 

Mathematically, 
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        ⁄
                                                               

where     is the average Poynting vector in the direction (      of the antenna. 

The Gain, G (     , of an antenna is defined similarly as the directivity. It is 

the ratio of the power density radiated at some point in the far field of the 

antenna to the power,    ,  of the antenna when radiated isotropically.  

Mathematically, 

       
   

       ⁄
                                                                 

Radiation Efficiency,  , is defined as, 

  
    

   

                                                                            

Combining eqns (1), (2) and (3) gives, 

   
        

        
                                                             

The gain of an antenna includes the effects of losses in the antenna and other 

surrounding structures, thereby making the efficiency to be less than unity. 

The directivity is determined solely by the shape of the radiation pattern of the 

antenna. 
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In actual fact,   

  
  

          

                                                            

where    is the radiation resistance of the antenna and       is the ohmic loss in 

the antenna material and any other losses in the surrounding structures, if 

present, such as loss to the ground in a grounded vertical antenna, for 

example.  

Note that the definition of “gain” in antenna theory should not be confused 

with the definition in circuit theory where signal amplification is implied. 

There is no “real gain” associated with antennas, since they are made of metals 

which are passive materials that dissipate rather than amplify energy. Antenna 

gain refers to the focusing or directional properties of the antenna compared to 

that of a lossless, isotropic radiator. 

Example 10.5.1 A directional antenna radiating a total power of 180 W 

produces a power density of 1       in a given direction at a point  , a 

distance        away. Calculate  

(a) the power density at A if an isotropic antenna radiates the same power 

of 180 W from the location of the directional antenna; 

(b)  the directivity in dB of the directional antenna. 
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Solution: Power density at A due to the isotropic antenna is, 

         
   

    
 

   

        
                

 b             y  
        

      x     
                         

Example 10.5.2  To produce a power density of          in a given direction, 

at a distance of 5 km an antenna radiates a total power of 10 kW. Calculate the 

power radiated from an isotropic antenna to produce the same power density 

at the same point, if the directive power of the antenna is 30 dB. 

Solution: The directive power of the antenna of 30 dB corresponds to a power 

ratio of 1000. That is, the ratio of the power radiated by the isotropic radiator 

to produce the same power density of the same value, at the same point, as the 

directive antenna, is 1000. Hence, the power of the isotropic antenna = 10 kW   

1000 = 10 MW. 

 

Example 10.5.3  An antenna has a  radiation resistance of 73 Ω, a loss 

resistance of 10 Ω and a power gain of 20. Calculate its directivity. 

 Solution:      

 ff      y  f  h             
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 h   f              y  
    

  
 

  

    
      

10.6   OTHER TYPES OF ANTENNAS 

Antenna shapes and sizes exist depending on the frequency bands and 

services required. Antennas for high frequency (HF) broadcasting service are 

different in shapes and sizes from those of VHF/UHF, FM and TV or DSTV 

broadcasts. 

Most low-frequency transmitting antennas use 
 

 
 vertical antennas. AM 

broadcast stations in the 535 to 1635 kHz frequency range use 
 

 
 vertical 

antennas since they are short, inexpensive and not offensive to sight. They 

provide omni-directional radiation patterns which is ideal for broadcasting.  

Note that a 
 

 
  antenna at a frequency of 1 MHz is 75 m in length. For many 

applications, for instance, portable or mobile equipment, it is not feasible 

practically to have a full 
 

 
  antenna. A cordless telephone operating in 46 to 49 

MHz range of frequency would require a  
 

 
  of about1.5 m long antenna. A 

whip antenna or even a telescopic type of this dimension would be 

impracticable to hold to one’s ear. To overcome the problem, much shorter 

antennas are used but with a lumped electrical component, such as a loading 

coil, incorporated to compensate for the shortened length, as shown in Fig. 5.7. 



155 
 
 

 

 

10.7   LINEAR ARRAY OF ANTENNAS 

The radiation pattern of a single 
 

 
 dipole antenna is a figure-8, which has a 

rather low directivity (or gain). In long distance communications, antennas 

with very high directivity are desirable, first, to provide high gain in a desired 

direction and, secondly, to reject signals from undesirable directions where 

signal interference could occur to or from other sources. 

By constructing an assembly of radiating elements in a proper electrical and 

geometrical configuration, referred to as an antenna array, it is possible to 

produce a radiation pattern of high directivity or gain in a desired direction. If 

the elements are arranged in a straight line, the arrangement is described as a 

linear array. 
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Usually, the array elements are identical, though not a necessary condition, 

but a more practical construction, simple and convenient for design and 

fabrication. The individual elements could be made of wire dipoles, loops or 

apertures. The total radiation field is a vector superposition of the fields 

radiated by individual elements. The larger the number of array elements 

with appropriate spacing and excitation phase of the current in each element, 

the better the directivity, especially when the partial fields generated by 

individual elements interfere constructively in the desired direction. 

Consider two linear arrays, each of four elements as shown in Figs. 5.8 (a) and 

(b), where 1<α indicates that the current in each element is of unit amplitude 

and phase angle α. In Fig. 10.8 (a), the elements are energized with equal in-

phase currents, while in Fig. 10.8 (b), the currents are of unit amplitude but in 

progressive phase lag of α radians from left to right.  
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In Fig. 10.8 (a), the contribution from each element at some distance from the 

array add up in phase in the two directions at right angles to the line of the 

elements to produce a broadside array pattern.  In Fig 10.8 (b), if the 

progressive phase lag α between adjacent elements is made equal to βd 

(where β = 
  

 
 and, d, is the spacing between the elements), the radiation 

pattern will produce a maximum value along the line of the elements to 

produce an end-fire array.  If the phase angle is reversed, i.e., a phase lead 

rather than phase lag, the beam direction is also reversed. 

By choosing a progressive phase delay between adjacent elements lying 

between +βd and  –βd radians, the resulting beam can be made to swing in 

any desired direction; thus, the beam can be made to scan in all directions 

without changing the positions or orientations of the antenna elements 

physically. We then have electrical beam swinging or scanning. 

Consider a linear array shown in Fig. 10.9, where there are n elements equally 

spaced by distance, d, apart, with equal current amplitudes in each element, 

but with a phase lead of α between adjacent elements.  If the field strength at a 

given far-field location, P, and angle, ф with the line of the elements is   , it 
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can be shown that the resultant field strength at P due to the linear array is 

given by, 

       {
       

    
}                                                         

where 

  
          

 
 

   The factor in the curly brackets in eqn (1) is the radiation pattern of the 

array. It has a maximum value of, n, when, u = 0.  

If α = 0, the maximum corresponds to cos ф =      or      which produces the 

broadside array pattern of Fig. 5. 8(a) with maximum field strength of n   . 

When α = -βd, the maximum corresponds to cos ф = 1, or ф = 0, which 

produces  the end-fire array of Fig. 10.8 (b). 

The maximum of the radiation pattern can be directed at any required angle ф 

to the line of elements by making α = -βd cos ф. 

In addition to the main lobe(s), there are sidelobes, with intermediate zeros 

between them as in Fig 10.8 (a). The zeros become minima if the amplitudes of 

the currents in the elements are not equal. The longer the array, or the greater 
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the number of elements, the narrower is the main beam or the greater is the 

directivity or gain of the array and the larger the number of sidelobes also.  

10.8   THE YAGI-UDA ARRAY OR THE YAGI ANTENNA 

The Yagi antenna is a commonplace antenna mounted on rooftops of 

buildings to receive TV signals in the VHF/UHF range of frequencies. It was 

invented by Uda, a Japanese professor an d developed by his co-worker, Yagi. 

The basic principle is explained as follows: 

Suppose we have two 
 

 
 dipole antennas, set up parallel to each other and 

separated by a distance  
 

 
 . If only one of them is energized, called the driven 

antenna, it will be observed that the field created by the driven (or active) 

antenna will induce a current to flow in the second antenna as a result of 

radiation coupling. The second undriven (or passive) antenna is called a 

“parasite” or a “parasitic” element. See Fig. 10. 10. 
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The effect of the coupled elements is to produce a radiation pattern with a 

greater directivity, in the direction of the driven element, than that of the 

driven element acting alone, as illustrated in Fig. 10. 11. 

 

 

 

 

Fig. 10 .11  Horizontal radiation pattern for two parallel 
 

 
 dipoles 

The circle shows the field strength of the driven element alone. 



161 
 
 

If more parasitic elements are placed in front of the driven element as shown 

in Fig. 10.12, the radiation pattern gets narrower and narrower as the number 

of elements are increased. 

 

 

 

Fig. 10.12  Multielement Yagi Antenna 

The mechanical structure of the Yagi antenna appears quite simple, but the 

design details in terms of the lengths of the radiating elements, their spacing 

and the diameter of the rods used as radiators, are somewhat complex in 

order to achieve the required radiation beamwidth. 

The beamwidth is defined as the angular separation between the two half-

power points on the power density radiation pattern. It is also the angular 

separation between the two 3-dB down points on the field strength radiation 

pattern, as illustrated in Fig. 10.13. 
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Fig. 10.13 Beamwidth of the radiation pattern 

10.9   PARABOLIC MICROWAVE ANTENNA 

Achieving high gain is the main reason for using a parabolic microwave 

antenna for transmitting and receiving signals in the microwave  range of 

frequencies of 1 to 100 GHz. Other important reasons are the following:  

(a)  The fact that broadcasting is not carried out at these frequencies, but for 

point-to-point communications, there is no need for omni-directional 

antennas; 

(b)  Receivers are usually much noisier at this frequency range than at 

lower frequencies, necessitating high gain antennas; 

(c) Special microwave applications such as radar, for direction finding, 

satellite communications or space exploration systems demand high 

gain directional antennas. 

The term, parabolic, comes from the fact that a metallic reflector whose shape 

is in the form of a geometric parabola is the main component in the beam-

forming design of the antenna. 
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The parabola is a plane curve, defined as the locus of a point which moves in a 

way that its distance from a point, called the focus, plus its distance from a 

straight line, called the directrix, is always a constant, as illustrated in Fig. 10. 

13. 

 

 

 

 

Fig. 10. 13 Geometry of the parabola 

The curve GCH describes a parabola whose focus is at F and the line GH is the 

directrix. By the definition of the parabola, we have FA +     = FB +     = FD 

+     = FE  +      = constant, k. The value of k may be changed if a different 

parabolic shape is desired. 

The ratio of the focal length FC to the mouth diameter GH is called the 

aperture,  
  

  
 , of the parabola. 

If a source of radiation is placed at the focus, all waves emanating from the 

source and reflected by the parabolic surface will have travelled the same 
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distance by the time they arrive at the directrix, irrespective of the point of 

reflection on the reflecting surface. All such waves will, therefore, arrive in 

phase at the directrix, resulting in a strong and concentrated beam parallel to 

the axis    . 

A practical parabolic reflector is a three-dimensional surface, like a dish; the 

reason why it is often referred to as a microwave dish. 

The reflector is directional for both transmitting and receiving; that is, all rays 

that arrive on the surface parallel to the axis     will be reflected from the 

surface and arrive at the focus in phase. Hence, the principle of reciprocity, 

which states that the properties of an antenna are independent of whether the 

antenna is used for transmitting or receiving a signal, holds in this case, also. 

The parabolic antenna is, therefore, a high-gain directional antenna because it 

collects radiation from a large area and concentrates them at the focal point. 

The microwave dish is commonly seen mounted on radio masts at intervals 

on a long-distance terrestrial microwave telecommunications system in a relay 

fashion, or as digital satellite television (DSTV) receivers mounted of roof 

tops. 
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WAVEGUIDE 

11.  THE HOLLOW RECTANGULAR WAVEGUIDE 

The name waveguide is customarily reserved for specially constructed hollow 

metallic pipes, though any system of conductors such as twin wires, coaxial 

cable or optical fibre (dielectric) capable of transmitting electromagnetic 

waves could be called a waveguide. Metallic waveguides which are of 

constant rectangular, circular or elliptical cross-sectional shapes are the most 

popular types in practice.  They are used at microwave frequencies where 

transmission lines or coaxial cables are ineffective because of their high 

transmission loss. Because the cross-sectional dimensions of a waveguide are 

of the order of magnitude of the wavelength of the electromagnetic wave, the 

frequency of use below about 1 GHz is not normally considered, but the 

frequency of up to about 300 GHz is quite possible. Within this range, 

waveguides are generally superior to coaxial cables for a wide range of 

applications, for either low or high power levels. The maximum operating 

frequency of a coaxial cable is about 18 GHz. 

Other advantages of waveguides are: 
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(i) They are simpler to manufacture than coaxial cables. In appearance, 

a circular waveguide looks like a coaxial cable, but it is hollow 

inside, devoid of the inner conductor of the coaxial cable. As a result, 

there is less likelihood of flashover in a waveguide which is filled 

with air instead of an inner conductor with supporting dielectric of 

the coaxial cable. The power handling capability of the waveguide is 

thereby improved.  

(ii) Since the waveguide is filled with air, and the wave propagation 

inside the guide is by reflection from the walls of the guide instead 

of conduction along them, power losses in waveguides are much 

lower than in comparable coaxial cables. For example, a 4 cm air-

dielectric coaxial cable has an attenuation of about 4 dB/100m at 3 

GHz, which is quite good for the cable, which rises to about 11 

dB/100 m for a similar foam-dielectric flexible cable. The figure for a 

similar dimension of waveguide produces about 2.3 to 2.6 dB/100m 

depending on whether the waveguide is made of aluminium or 

brass. 
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11.1   SOLUTION OF THE MAXWELL’S EQUATIONS FOR THE WAVE 

PROPAGATION WITHIN THE WAVEGUIDE 

The hollow rectangular waveguide will be considered here because of the 

simplicity of applying the boundary conditions.  Assume the wave travels in 

the x-direction which is the direction of the guide, with a harmonic variation 

with respect to time. There are two major modes of transmission, referred to 

as (a) the Transverse Electric (TE) and (b) the Transverse Magnetic (TM) 

modes.  

As the names connote, the TE mode refers to a situation where the electric 

field component of the wave is entirely transverse to the direction of 

propagation, and has no component along the direction, i.e     = 0. Similarly, 

TM mode connotes the magnetic field component is transverse, and    = 0. 

Let us consider the TE mode of transmission first. The procedure to be 

followed in solving for each of the field components as a function of time and 

space may be outlined by the following eight steps: 

1. Start with Maxwell’s equations. 

2. Apply restriction of harmonic variation with respect to time. 

3. Apply restriction of harmonic variation and attenuation with respect to 

x. 
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4. Select the TE mode of transmission,    =  0, but     ≠  0. 

5. Find equations for the other four field components (  ,              ) in 

terms of    . 

6. Develop scalar wave equation for   . 

7. Solve this wave equation for    subject to boundary conditions of the 

waveguide. 

8. Substitute    back into equations of step 5, giving a set of equations 

expressing each field component as a function of space and time. 

Step 8 above constitutes the complete solution of the problem. 

Starting with step 1 of the procedure: 

 

 The Maxwell’s divergence equations in rectangular coordinate systems 

are as follows: 

                                         
   

  
   +  

   

  
    +  

   

  
      =  0     (1) 

        
   

  
    +   

   

  
  +  

   

  
    =  0      (2) 

 The curl expressions, are as follows: 

           ̅     ̅  
  ̅

  
                               (3) 
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                             ̅     
  ̅

  
                     (4) 

which, in rectangular coordinates , are expressed by the following six scalar 

equations: 

         
   

  
    -    

   

  
   -        -    

   

  
    =  0                                    (5) 

               
   

  
    -    

   

  
   -        -    

   

  
   =  0                (6)                        

        
   

  
    -    

   

  
   -        -    

   

  
   =  0                (7)  

                          
   

  
    -    

   

  
  + μ

   

  
    = 0                    (8) 

              
   

  
    -    

   

  
  +  μ

   

  
   = 0         (9) 

                         
   

  
    -    

   

  
   +  μ

   

  
   = 0         (10) 

Assume now that any of the field component varies harmonically with time 

and distance and also attenuates with distance (steps 2 and 3), and that the 

waves travel in the positive x-direction, then we may express the field 

component,    as, 

                      =                               (11) 

where   = propagation constant = α + jβ 
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            α = attenuation constant, and  

 β = phase constant. 

When the restriction, eqn (11), is introduced into eqns (1) and (2) as well as 

eqns (5) to (10), we have the following equations: 

-       +  
   

  
   +     

   

  
  =  0     (12) 

-      +   
   

  
    +     

   

  
  =  0                 (13) 

   
   

  
    -    

   

  
   -                  =   0                 (14) 

   
   

  
   +           -                  =   0       (15)  

-      -  
      

  
     -                  =    0     (16) 

                  
   

  
   -    

   

  
   +           =   0      (17) 

                  
   

  
   +         +          =   0       (18) 

                   -      -   
   

  
    +          =   0       (19) 

These equations can be simplified by introducing a series impedance Z and 

shunt admittance Y as in the case of transmission line, where 

  Z  =  - jωμ     (      )        (20) 
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  Y  =             (S     )         (21) 

Substituting these relations in eqns (12) to (19), we have the following 

equations: 

`    -        +  
   

  
   +     

   

  
  =  0              (22) 

                               -       +   
   

  
    +     

   

  
  =  0        (23)        

                   
   

  
    -    

   

  
   -  Y    =   0           (24)               

     
   

  
   +           -  Y    =   0              (25)      

                            -        -  
      

  
     -  Y    =   0            (26)    

                   
   

  
    -     

   

  
  -   Z     =   0              (27)     

                    
   

  
   +          -  Z     =   0              (28)      

                             -       -   
   

  
  -  Z      =   0              (29)      

Eqns (22) to (29) are the general equations for the steady-state field of a wave 

travelling in the x-direction without any restrictions yet on the mode of 

propagation of the wave within the guide or on the shape of the guide. 
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We can now go to step 4 and select the mode of propagation, TE, for which    

=  0, but     ≠  0. 

                 
   

  
   +     

   

  
  =  0              (30) 

               -      +   
   

  
    +     

   

  
  =  0          (31)       

                                
   

  
    -    

   

  
   =   0             (32) 

                
   

  
   +           -  Y    =   0            (33)           

   -       -  
      

  
     -  Y    =   0           (34)    

                     
   

  
    -     

   

  
  -   Z     =   0            (35)     

                                           -  Z     =   0            (36)      

                                               -      -  Z      =   0             (37) 

                        Consider eqns (36) and (37), the ratio  

                                
  

  
     =   - 

  

  
   =   

  

  
    =  

   

   
   =      .     (38)   

                          has the dimension of impedance. Since these the field components are 

transverse in nature, the resulting impedance is referred to as the transverse-

wave impedance,    . 
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  Introducing this new impedance into eqn (34) and solving for    in terms of 

     gives 

                                =  
  

       
  

   

  
    (39) 

Similarly, the other field components,      ,     ,    are expressed in terms of  

   as follows: 

                         =  
  

       
  

   

  
         (40) 

                                  =  
   

       
  

   

  
           (41) 

                                           =  
    

       
  

   

  
  (42) 

Eqns (39) to (42) express the four transverse field components in terms of   . 

This completes step 5 of the eight-step procedure. 

To develop the wave equation for    (step 6), take the y-derivative of eqn (39) 

and the z-derivative of eqn (40) and substitute both in eqn (31) to obtain 

         -     -  
 

       
  ( 

    

   
  +  

    

   
  )  =  0  (43)   or 

         
    

   
  +  

    

   
  +   (  -  Y   )      =  0    (44) 

             Putting     =   (  -  Y   )                (45) 
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reduces eqn (44) to 

           
    

   
  +  

    

   
  +       =  0                                      (46) 

This is a partial differential equation of the second order and first degree, 

which is the scalar wave equation for   . The equation applies to a TE wave in 

a guide of any cross-sectional shape. This completes step 6. 

This wave equation is now to be solved subject to the boundary conditions of 

the waveguide, (step 7). The waveguide under consideration is a hollow 

rectangular type as shown in Fig. 6.1 

 

 

 

 

Fig. 11.1 Hollow rectangular waveguide 

(see Fig. 13-35, p 537 , sect 13-15, Kraus Carver) 

The height and width of the rectangular waveguide are   ,    , along the y- and 

z- axes, respectively. Assuming that the walls are perfectly conducting, the 
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tangential component of E must vanish at the surface of the guide. Thus, at the 

sidewalls,    must be zero, and at the top and bottom surfaces,     must be 

zero. Eqn (46) is now to be solved subject to these boundary conditions. 

The solution to be adopted is by the method of separation of variables. Since 

   is a function of y and z, we may seek a solution of the form 

                          =  YZ   (47) 

where Y is a function of y only, i.e., Y  =  f (y), and Z is a function of z only. 

 [ Caution! Y and Z in this section must not be confused with admittance and 

impedance of previous sections] 

Substituting eqn (47) into eqn (46) we have   

                          Z 
    

   
  +  Y 

   

   
  +   YZ =  0  (48) 

Dividing by YZ to separate the variables gives 

                           
 

 
 
   

   
  +  

 

 
 
   

   
  =  -                    (49) 

The first term is a function of y only, the second term is a function of z only, 

while     is a constant. For the two terms, each involving a different 
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independent variable, to sum up to a constant, requires that each term must 

be a constant. Therefore, we may write 

                                            
 

 
 
   

   
  =  -                          (50)   and 

                                          
 

 
 
   

   
  =  -                                    (51) 

where    and       are constants. This implies    

                                     +         =                                        (52)  

Eqns (50) and (51) each involves one independent variable. 

A solution of eqn (50) is 

                                 Y  =     sin √   y                        (53)  

Another solution is 

                                 Y  =     cos √   y                                            (54)     

If eqns (53) and (54) are each a solution of Y, then the sum of both will also be a 

solution, i. e. 

                    Y  =       sin √   y  +      cos √   y                        (55) 

Similarly, a solution of eqn (51) for Z is given by 
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                                     Z  =      sin √   z  +       cos √   z                                 (56) 

Thus, eqn (47),        =  YZ    becomes, 

      =          sin √   y  sin √   z  +        cos √   y sin √   z   

                      sin √   y  cos √   z  +        cos √   y cos √   z                 (57) 

Substituting eqn (57) into eqns (41) and (42) and introducing the boundary 

conditions, 

                  =  0  at  z  =  0,   z  =    ,             (58)    and 

                   =  0  at  y  =  0,   y  =                (59) (See Fig. 6.1)   

It can be shown that only the last term of eqn (57) satisfies the boundary 

conditions provided, 

             √    =  
  

  
    and    √     =  

  

  
          (60), 

where m, n, are integers (0, 1, 2, 3, <), which may be of same integers or of 

different integers. 

The solution  for        may now be written as 

                                           ( y, z)  =      cos 
   

  
  cos 

   

  
                           (61)  

where      =         =  constant.                                     (62) 
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If this constant is multiplied by the constant term exp( jwt –  x), the solution 

will still be preserved. 

 Thus, the complete solution for      is 

                            ( y, z, x, t)  =      cos 
   

  
  cos 

   

  
          –                     (63) 

  Step 7 is now completed. 

To perform step 8,    will be substituted into the equations of step 5 to 

determine the other four field components,                    , using eqns (39) 

to (42),respectively, resulting in the following expressions: 

                    =  
 

  
   

  

  
 sin 

   

  
 cos 

   

  
       –                                      (64) 

                     = 
 

  
    

  

  
 cos 

   

  
  sin 

   

  
      –                             (65) 

                       = 
 

  
      

  

  
 cos 

   

  
  sin 

   

  
      –                      (66) 

                       = - 
 

  
        

  

  
 sin 

   

  
  cos 

   

  
      –                     (67) 

Eqns (63) to (67), to which may be added the TE mode condition of    = 0 are 

the complete equations for the six scalar field components in the hollow 

rectangular waveguide, having width    and height   . 



179 
 
 

[Note that subscript (y, z, x, t) has been dropped in eqns (64) to (67) for simplicity, 

and       is also omitted in accordance with phasor notation] 

11.2   TRANSMISSION MODES      AND      

Integers m, n appearing in all the field components constitute the various 

transmission modes within the waveguide. 

      11.2.1         MODE 

For this mode, m  =  1,  n  =  0.  It is apparent that the components    =  0,      =  

0 and the three components,    ,     , and     are not zero,  resulting in the 

following expressions: 

                          
 

  
     

 

  

   
  

  

   –                                                  

        
  

  

  –                                                                     

 
 

  
  

 

  

   
  

  

    –                                                        

The variations of these three components as a function of z for modes       

     ,          are as shown in Figs 11.2 (a)  and (b). 
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(see Fig 13 – 11, p. 551 J. D. Kraus 3rd Ed.) 

 

 

 

Fig 11.2 Half-cycle field variations in the waveguide 

For m =  1, there is a half-cycle variation with respect to z, for each field 

component. The variation for   , for instance, shows a maximum value at the 

centre of the guide and zero at the walls. For m  =  2, the variation consists of 

two half-cycles. 
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When n  =  1, there is a half-cycle variation of each field component with 

respect to y. 

In general, the value of m or n indicates the number of half-cycle variations of 

each field component with respect to z and y, respectively. Each combination 

of m and n values represents a different field configuration or mode in the 

guide. The notation      (or     ) is adopted to indicate mode m, n in 

Transverse Electric (or Transverse Magnetic) transmission in the guide. The z-

dimension is generally regarded as the larger dimension of the guide. 

Figs 11.3 (a) and (b) illustrate the              electric and magnetic cross-

sectional field configurations of the guide. 

 

 

 

 

 

 

Fig. 11.3 Waveguide cross-sectional field configuration for             modes 
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11.3   PROPAGATION CONSTANT, CUT-OFF FREQUENCY AND 

CUT-OFF WAVELENGTH IN A LOSSLESS HOLLOW 

RECTANGULAR WAVEGUIDE. 

Going back to eqns (20), (21), (38), (45), (52) and (60), the expression for the 

propagation constant can be obtained from the expression, 

(
  

  

)
 

 (
  

  

)

 

                                                             

where                            =      -  jωμ (σ  +  jω   )                                                     (2) 

For a lossless medium inside the waveguide, σ  =  0, and so, 

  √(
  

  

)
 

       (
  

  

)
 

                                                   

At sufficiently low frequencies, the last term of eqn (3) is smaller than the sum 

of the first two terms under the square root sign. Under this condition,   is 

real and so the wave (or mode) is not propagated but attenuated. 

Conversely, at sufficiently high frequencies, the last term becomes larger than 

the sum of the two terms, and   becomes imaginary, resulting in unattenuated 

wave propagation within the guide.  
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At some intermediate frequency where the last term is equal to the sum of the 

two terms,   becomes zero. The frequency is referred to as the cut-off 

frequency for the mode m, n under consideration. 

At frequencies higher than the cut-off frequency, the mode propagates 

without attenuation, while at frequencies lower than the cut-off frequency, 

the mode is attenuated and not propagated. 

The cut-off frequency,   , is expressed by                               

   
 

 √  
√(

 

  

)
 

   (
 

  

)
 

                                                 

And the cut-off wavelength, 

    
 

√(
 
  

)
 

   (
 
  

)
 
                                                        

The cut -off frequency for the      mode in a rectangular waveguide is from 

eqn (5)  

        
 

 √  
 
 

  

                                                            

This gives the lowest frequency of any of the TE modes, and is referred to as 

the dominant mode. 
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The cut-off wavelength for the      mode is from eqn (6) 

                                                                                 

 

11.4   PHASE VELOCITY IN THE GUIDE 

The phase velocity in an unbounded medium of the same dielectric material 

as in the guide is 

   
 

√  
                                                                    

and the phase constant is   

                                     

    √   
  

  

                                                               

where      is the wavelength in unbounded medium. 

Eqn (11.3.3) becomes 

                           √       
                                                              

At frequencies higher than cut-off,    > k, 

Therefore, =  jβ, where 



185 
 
 

   

    
  

 
 √  

      √       (
  

  

)
 

   (
  

  

)
 

                                 

         

is the phase constant,  and λ is the wavelength in the guide. 

The phase velocity in the guide is, therefore, 

    

    
 

 
 

  

√     (
  

   
)

 

                                                  

             

  
  

√     (
  
 
)

 

                                                           

Eqn (6) implies that the phase velocity in the guide is real and greater than the 

velocity in the unbounded medium when the frequency of propagation is 

greater than the cut-off frequency. When the frequency is equal to or less than 

cut-off, there’s no wave propagation in the guide, but attenuation, as 

explained in section (6.3) above. 
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APPENDICES  

APPENDIX 1 
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