Chapter 4

LINEAR
TRANSFORMATIONS AND
THEIR MATRICES

4.1 LINEAR TRANSFORMATIONS

The central objective of linear algebra is the analysis of linear functions
defined on a finite-dimensional vector space. For example, analysis of the
shear transformation is a problem of this sort. First we define the concept of
a linear function or transformation.

Definition 4.1.1. Let V and W be real vector spaces (their dimensions can
be different), and let 7" be a function with domain V' and range in W (written
T: V—W). Wesay T is a linear transformation if

(a) Forall x,y € V, T(x +y) =T(x) + T(y)(T is additive).

(b) For all x € Vr € R, T(rx) = rT(x)(T is homogeneous).

If V and W are complex vector spaces, the definition is the same except in
(b), € C. If V=W, then T can be called a linear operator.

Example 1. Let V =W = EL. Define T'(x) = mz, where m is a fixed real
number. Show that 7" is a linear transformation.
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Solution We must show that T is additive and homogeneous. For the
additivity, we let  and y be in E' and calculate

T(x+y)=m(z+y) =mz+my
T(z) 4+ T(y) = mx + my

Since T'(x + y) = T(z) + T(y), we know that T is additive. Also T is
homogeneous since

T(rx) =m(rx) = (mr)z = r(mz) = rT(x)
Thus 7' is a linear transformation.

Example 2. Let V =W = E'. For z € V, define F(z) = mx + b, where m
and b are real numbers and b # 0. Show that F'is not a linear transformation.

Solution First we check additivity, noting F'(-) = m(-) + b:
Flx+y)=m(z+y)+b=mx+my+0b
However,
F(z)+ F(y) = (mx +b) + (my 4+ b) = mx +my + 2b

Since b # 0,20 # b so F(x +y) # F(x) + F(y) for all z,y € V, and F is not
linear.

Example 3. Let V =P, and W = P,_;, and define, for fin V,T: V - W
by (T(f)) = f'(x)x in R. That is, T is differentiation. From calculus,
we know that for differentiable functions f and g,(f +¢g) = f' + ¢ and
(rf) =rf’, so T is linear.

Example 4. Let V = {real-valued functions defined and continuous on
[a,b]} = Cla,b]. Let W = E' and define T: V — W by T(f) = f;f(:v) d.
Then T is linear because from calculus we know that for integrable functions
f and g,

f:f(cc) +g(z) dor = f:f(cc) dx + f:g(az) dx and f;rf(:c) dr = rf;f(x) dx,
for r in R.

Example 5. Let V = C,, and let W = C!. Define T: V — W by T(A) =
tr A, for A in C,,,. So T is linear by properties of the trace of a matrix.



4.1. LINEAR TRANSFORMATIONS 271

Example 6. Let V = M,,,, and W = M,,,, and define T'(A) = AT for A
in M,,,,. Then T is linear by properties of the transpose.

In Examples 1 and 2, the functions 7" and F' have graphs as straight lines,
yet in Example 2 we found F' was not linear. The difference between T" and
F'is in the constant term. If b = 0, we have linearity; if not, we do not have
linearity. In examples 3 through 6, 7'(6) = #. This gives us a clue to the first
property of linear transformations.

Theorem 4.1.1. Let V and W be vector spaces. If T: V. — W is a linear
transformation, then T(0y) = 6w. (The subscripts emphasize the vector
space that the zero vector comes from.)

Proof. Since 0y + 0y = Oy,

T(Oy)=T(Ov +0v)=T(0v)+T(0v)
\?,v;/ By additivity /™ ~ -

and so
T(Oy)=T(0v)+T(6v)

By uniqueness of fy in W, the only way the last equation can hold is if
T(0y) = Ow. O

This theorem can sometimes be used to show transformations are nonlin-
ear. A logical consequence of the theorem is
If T(0y) # 0w, then T is not linear.

Example 7. Show that T: E? — EZ2, defined by
T((z1,22)) = (1 + 22,01 — 22+ 1)
is not linear
Solution In E? T(0) =T((0,0)) = (0,1) # 6. Therefore, T is not linear.
Example 8. Let T: E? — E' be defined by
T((z1,72)) = 1% + 25

Show that 7" is not linear even though 7'(0) = 6.



272 CHAPTER 4. LINEAR TRANSFORMATIONS

Solution We have T'(6) = T((0,0)) = 0 + 0> = 0, which is the zero of E'.
This allows no conclusion; the definition of linearity must be used. To check
additivity we calculate

T(x+y)="T((21,22) + (¥1,¥2))
=T((z1 4+ y1, T2+ 1)) = (21 + 12)* + (22 + y2)?
=212 4+ 2001+ + 1o+ 2m0ys + 0

and
T(x)+T(y) = T((z1,22)) + T((y1,92)) = x1° + 22> + y1°> + 32

Since T'(x +y) # T'(x)+7'(y), we know that 7" is not linear. In most cases, to
determine linearity or nonlinearity of a transformation, we use the definition.

Example 9. Show that the following transformation are linear.
(a) T: E* — E? defined by
T((x1, 2, 23)) = (21 + T2, T2 + T3, T3 + T1)
(b) T: E* — E? defined by
T((x1,z9,23)) =V X (21,22, T3)
where v is a fixed vector in E?
(c) T: E3 — E' defined by
T((x1,29,x3)) = axy + bxy + cx3
where a, b, and ¢ are fixed real numbers

(d) T: May — My defined by

r(Ca) =G )

(e) T: Py — P, defined by

az?

T(ax+b)=7+b$
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(f) T: C? — C? defined by
T((Zl, ZQ)) = (Zl + 22,21 — 22’2)

Solution Parts (a) through (e) are left to the problems.

(f) T((21,29) + (u1,u2)) = T(21 + ug, 22 + uz)
= (21 +uy + 20 + ug, 21 + up — 229 — 2up)
= (21 + 22,21 — 222) + (u1 + U2, uy — 2uz)
= T(z1,29) + T(uy, us)
T(e(z1,22)) = T(cz1, cz0) = (cz1 + c29,c21 — 2¢23)
= c(z1 + 29,21 — 229)
= I'(z1, 22)

Thus T is linear.
Example 10. Show that T': Coy — Cay defined by T'(A) = A is not linear.

Solution We know that T'(cA) = cA = ¢A = ¢T(A) # c¢T(A) unless c € R,
but ¢ can have a nonzero imaginary part. So T is not linear. [However,
T is called conjugate linear because T(cA) = ¢T'(A) and T(A + B) =
T(A)+T(B).]

Example 11. Let V = M,; and W = M,,;. Let M be an m x n real
matrix. Define T: V' — W by

T(X)=MX
T is linear because by matrix algebra

TX4+Y)=MX+Y)=MX+ MY
T(cX)=M(cX)=c(MX)
Example 12. Let V = C,,; and W = C,,; and let Z be an m X n matrix

from Cp,y,. Define T': 'V — W by T'(X) = ZX. Then T is linear because by
matrix algebra

Z2(X+Y)=ZX+2ZY
Z(cX) =c(ZX)
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Some special linear transformations must be noted for future use. The
zero transformation Ty from V to W is defined as

T(x) = 0w for all x in V
The identity transformation I from V to V is defined as
Ix)=x forallxinV
The contraction transformation 7T, from V to V is
T,(x) = ax O<a<l, forallxeV

The dilation transformation 7 from V' to V' is
Thx = Bx 1< g, forallx eV

Verification that these are linear transformations is left to the problems.

Although several examples of linear transformations have now been given,
we have not yet begun to analyze linear transformations. In algebra, analysis
of functions was done with graphs of the functions. In our present situ-
ation we must usually be satisfied without the types of graphs we
drew in algebra. Usually we draw “graphs,” as indicated in Fig. 4.1.1,
whenever possible. Ordinarily this can be done only when V' and W are
versions of £, n = 1,2, or 3. Other cases require considerable imagination.
Consider Example 13.

Example 13. “Graph” the transformation T: E? — E3, defined by T'(x1, z2)
1

= 5(1‘1, T2, 0)

Solution The visualizations of E? and E® as well as some special vectors
are shown in Fig. 4.1.2. The image of these vectors after 1" acts on them is
also shown in that figure. If we put more vectors of length 1 in the circle
in Fig. 4.1.2a, the terminal points of the images lie on the circle of radius
%, as in Fig. 4.2.2b. This supports our intuitive feeling that 7" “shrinks” all
vectors in the domain, much like a contraction transformation.

Since graphs are not simple for linear transformations, we must be able to
analyze them without graphs as well. Unless specified otherwise, all vector
spaces from now on are assumed to be finite-dimensional. One of the basic
tools for the analysis of linear transformations is the following:
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Kernel problem

Given T: V — W, find all x in V such that T'(z) = 6. The set
of all such x is called the kernel of 7" and written ker 7.

Roughly speaking, the kernel problem is very much like the problem from
algebra of solving the equation f(x) = 0, for example, solving 2> —2z—3 = 0.
In algebra this problem is solved by factoring or using the quadratic formula.
In linear algebra the solution to the kernel problem many times reduces
to solving m equations in n unknowns (the “first basic problem of linear
algebra”).

Example 14. Find ker T, where T: E3 — E? is defined by T'((x1, 72, 23)) =

(.’L‘l + Lo, Ty — .’L‘g).

Solution Since ker T' = {x|T'(x) = 0}, we must solve T'((z1, z2, 23)) = (0,0),
that is,
(21 + 22,2 — 23) = (0,0)

The resulting equations are
T+ To = 0
Lo — T3 = 0
which have solution (—k, k, k). Therefore

kerT = {v € E’|v=k(-1,1,1)} = span{(—1,1,1)}

In example 14 the kernel of the given linear transformation was a subspace
of the domain. In fact, a basis for ker T" was {(—1,1,1)}. The kernel of a
linear transformation is always a vector space.

Theorem 4.1.2. Let V' and W be vector spaces, and let T': V. — W be a
linear transformation. The set kerT' is a subspace of V.

Proof. The kernel of T' is nonempty because T'(#) = 6. We need to show
that kerT" is closed under addition and scalar multiplication. Recall that
x € kerT if and only if Tx = 0. Let x and y be in kerT’, and let ¢ be a
number. By the linearity of T,

Tx+y)=Tx) +T(y)=0+60=190
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and
T(cx)=cT'(x)=cl =10

so x+y € kerT and cxkerT. Thus kerT" is a subspace of V. O

Since ker T is a subspace of V, it has dimension. The dimension of ker T’
is called the nullity of 7. Thus for the linear transformation in Example 14
the nullity is 1. We write this

n(T) =1

Example 15. Calculate n(7T') for the linear transformation 7: E® — E?
defined by
T((a,b,¢)) =(a+2b+c,—a+3b+c)

Find a basis for ker T'.

Solution We must find the set of all vectors (a, b, c) in E® that T(a,b,c) =
(0,0). That is, the equation

a+2b+c\ 0
—a+3b+c )  \0

must be solved. The solution is

a —k
bl =1 —2
c 5k

and ker T' = span{(—1, —2,5)}. Therefore dim(ker7) = 1, so n(T) = 1. A
basis is {(—1,—2,5)}.

To continue the analysis of linear transformations, we consider the range
of T. In algebra finding the range of a function f is important in graphing
y = f(x). For example, y = 2% — 2z — 3 has range {y| —4 <y < co}. The
solutions of #? — 2x — 3 = 0 are z = 3 and # = —1. (That is, the kernel of f
is {—1,3}.) All this information is shown in Fig. 4.1.3. The range of a linear
transformation cannot always be used to obtain a graph of 7', but it is quite
useful in other ways.

Definition 4.1.2. Let T: V — W be a linear transformation. The range
of T is the set of all possible v in W such that y = 7T'(x) for some x in V.
The range of T' is written range 7. The range of T' is a subspace of W (see
the problems).
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Example 16. Define T from E?* to E* by T((a,b,¢)) = (a —b+c¢,2a +b —
¢, —a — 2b + 2¢). Determine range 7" and dim(range 7'). Find two vectors
in range 1" and two vectors not in range 7. Find a basis for range 7. Find
ker T'. Graph ker T" and range T'. Attempt a graph of 7.

Solution Let y = (y1,¥2,y3) be in range T. Thus y = T'((a, b, c)) for some
vector (a,b,c) in E3. That is, the equation y = T'((a,b,c)) must be con-
sistent. We reduce the equations and see what conditions the consistency
forces. The equations are

a— b+ c=1y
2a+ b— c=1y
—a—2b+2c=1ys

and they reduce to

a—b+ c=
3b—3c= 1y — 2y
0=—y1 +y2+ 13

So if y = (y1, y2,y3) is to be the range T', then —y; + y» + y3 = 0. That is,

range T' = {(v1,y2,y3)|th = v2 + s}

The condition on y,¥ys, and ys3 gives a criterion for inclusion in range 7'
Some vectors in range 7" are (—2,—1,—1) and (0,—1,1). Some vectors not
in range 7" are (1,1,1) and (1,0,0). The dimension of range 7" is 2, since the
equation —y; + y2 + y3 = 0 allows the assignment of arbitrary values to any
two of the values of y.

To obtain a basis, we can use (—2, —1, —1) and (0, —1, 1) as above, since
they are linearly independent in the range and dim(range T') = 2. In fact,
any two linearly independent vectors in range 7' form a basis for range T
The kernel of T is found by setting y; = y» = y3 = 0 in the linear equations
above. We obtain ker 7" = span{(0,1,1)}. Graphs are shown in Fig. 4.1.4.

The dimension of the range of a linear transformation T is called the
rank of 7" and written R(7"). That is,

R(T) = dim(range T")
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The rank and nullity of a linear transformation are related to each other by
the equation
rank 7"+ nullity 7' = dim(domain)

This is the result of the following basic theorem, one of the most important
in linear algebra:

Theorem 4.1.3. IfT: V — W is a linear transformation and dimV = n,
then

R(T)+n(T)=n (4.1.1)
Before proving this theorem, we consider an example of its use.

Example 17. Find the nullity of the linear transformation in Example 16.

Solution We had T: E* — E? and found R(T) = 2. Since dimV =
dim E? = 3, Eq. (4.1.1) leads to

24+n(T)=3
Therefore n(T) = 1

Proof of Theorem 4.1.3. Since kerT and range T are vector spaces, R(T")
and 7(7T) are defined. We consider three cases: n(7T") = 0, n(7) = n, and
1<n(T)<n-1

Case 1: n(T) = 0. Suppose R(T) = k < n. That is, suppose that
n(T) + R(T) < n. We will obtain a contradiction. Since R(T") = k, any set

of more than k vectors in range T is linearly dependent. Let {vi,...,v,} be
a basis for V. Since k < n, {T(v1),...,T(v,)} must be linearly dependent
and so there exist cq,... ,c,, not all zero, with

al(vi)+- 4T (vy,) =0

Thus by linearity T'(¢c;vi + -+ 4+ ¢pvp) = 0 and ¢yvy + -+ + ¢, vy, € ker T
Since ker ' = {#} and not all the ¢;’s are zero, we have {vy,...,v,} being
linearly dependent, which is a contradiction. Therefore, R(T) = n and
n(T)+R(T)=0+n=n.

Case 2: n(T) = n. Since kerT' is a subspace of V' and dim(kerT) =
dim V', we actually have kerT' = Vand T'(x) = 0 for all x € V. Therefore
range 7' = {0} and dim(range T') = 0. Thus R(T) +n(T) =0+ n =n.
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Case 3: n(T) = k,1 <k <n-—1 Let B = {vy,...,vi} be a ba-
sis for kerT. By a previous result, B can be extended to a basis § =
{vi,. ., Vg, Ugs1, ... ,u,} of V, since dimV = n. We will show that 7 =
{T'(ug41),...,T(uy,)} is a basis for range 7. Then we will have R(T") = n—k
and

RT)+nT)=Mn—-k)+k=n

T is Linearly Independent Consider
1T (1) + - + ¢ T(u,) =6
By the linearity of T,
T(Cri1, U1+ -+ cpup) =0
and so Cgp1Ugy1 + - + cpuy, is in ker T'. So there exist ¢y, ... , ¢, with

CiVi+  + CpVg = Cp1 V41 T -+ Cplly

That is,

CLVi+  + CpVg — Cpq1Upq1 — * =~ Cplp =
and since S is a basis for V, we know that ¢y = - - =cr =cpp1 = =¢, =
0. Thus 7 is linearly independent. O

7 Spans range T Let y € range T', so that y = T'(x) for some x € V. Since
S is a basis for V', we can write X = ¢; vy +- -+ Vi + Crp1Ugr1 + - - -+ Uy,
and so

y=T(x)=T(civi+ -+ cxvi) + 1T (Wps1) + - - + T (uy,)
= 0 + 1T (Wgyr) + -+ - + e T'(uy)

Thus y € span 7.

Example 18. “Graph” T: E? — E3, defined by T'((z1, s, 23)) = (—21 +
To + x3,2T1 — X2, T1 + T + 3x3), indicating ker T and range T'.

Solution Solving T'(x) =y, we find

111
01 2| wit2uy (4.1.2)
000
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To determine kerT', set y = 6. The solution of the resulting equations
is x = (—k,—2k, k), so kerT' = span {(—1,—-2,1)}. From Eq. (4.1.2) we
see that range 7' = {ylys — 2y2 — 3y1 = 0} = {yly = (s,t,3s + 2t)} =
span {(1,0,3),(0,1,2)}. A graph is shown in Fig. 4.1.5.

Two more ways to view the action of a linear transformation are to de-
termine the images under 7' of geometric figures such as squares and circles.

Example 19. It can be shown (see the problems) that if T: My — My
is a linear transformation defined by

where A is a nonsingular matrix, then the image of a straight-line segment
from P to Q in E? will be a straight-line segment from T'(P) to T(Q). Let

T be defined as
l‘l . 1 2 £U1
() =G )

Find the image under 7" of the “unit square” shown in Fig. 4.1.6.

Solution We find the images of the vertices. Since each side of the square is
a straight-line segment, the image of the square will be the figure generated
by joining the images of the vertice with a straight-line segment. Now

()= ) ()= ()
()= ) ()=

Therefore the image is the parallelogram shown in Fig. 4.1.7. Note that
points are associated with terminal points of the vectors naturally associated
with the elements of M.

Example 20. Show that T: My, — Moy, defined by

r(()= G35 )

transforms the unit circle ;2 = 252 = 1 to an ellipse.
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()
() - ()

2 2 2 2
yi° Y AT 9x 2 2
— — —_— pu— 1
4 + 9 4 9 1"+ 2o
Therefore the image of the circle is an ellipse. This action of 7" is shown in

Fig. 4.1.8.

Solution Since the image of

under T is

we have

An interpretation of Fig. 4.1.8 is that T dilates with constant 3 in the x5
direction and constant 2 in the z; direction.

Example 21. Show that T: Mjs; — Ms3; defined by

Y1 1 a 0 0 1
Yo | =T To =10 b 0 To a,b,c >0
Y3 x3 0 0 ¢ T3

transforms the sphere ;% 4 252 + 232 = R? to an ellipsoid.

Solution The image of

I axq
To is bxo
3 CI3

and
(ar1)*  (bx2)?  (cw3)?
a? b2 c?

Division by R? yields

2 2 2 2
=21+ 22" + 23 =R

y12 y22 y32

@RE T RE T (eRE

which is an equation for the ellipsoid shown in Fig. 4.1.9.
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Important examples of linear transformations exist which cannot be ana-

lyzed geometrically except in some generalized way. One exampleisT: P, —
Pri1 defined by

T(ap + a1z + - + a,2"™) = apx + a1 + - - + apz™
That is, for f in P,, T(f) is the function obtained at each = by multiplying
f(z) by x. That is,
(T()(x) = xf(x)
This linear transformation is a special case of the coordinate operator in
quantum mechanics.
If we allow complex vector spaces and consider the set of nth-degree

polynomials with complex coefficients with the same operations as P,, we
will have a vector space P,©. We can define a transformation

T(ao + a1z + azx® + - - 4 apz™) = —i(a; + 2a02 + - - - + naz™ )

that is, i
(T())(z) = —i——(f(2))

Now T is linear, and the rule for 7" is the same as the rule for the momentum
operator in quantum mechanics. However, the momentum operator has a
different domain.

PROBLEMS 4.1

1. Determine whether the following transformations 7': E3 — E° are

linear.

(@) T((z1,22,73)) = (%1, %1 — T2, T2 + T3)
(b) T((z1, 22, 23)) = (1, T2, T273)

(¢) T((x1,z9,23)) = (21,0,0)

(d) T((x1,x2,23)) = (1,0,0)

() T((x1,xe,x3)) = (3x1 + 222, 23, |22|)
(f) T((x1, 22, 23)) = (71 — T2, 1 + 22, T3)

2. Determine whether the following transformations defined on My, are
linear.
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(a) T(A) = AT

(b) T(A) = A+ AT

(c) T(A)=ATA

(d) T(A) = A+ I (where I is the identity matrix)

(e) T(A) = kA (where k is a real number), k # 0

(f) T(A) = A?

(g) T(A) =det A

(h) T(A) = tr A (trace of A = sum of the diagonal elements)

3. Determine whether the following transformations 7: Py — Po are

linear.
(a) T(a+ bx + cz?) = ax + ba®
(b) T(a+bx+cx?)=z—c
(c) T(a+bx +cx?) =2
1
d) T ) —
(d) T(a+ bx + cx®) Py erp—s
(e) T(a+bx+cx?)=(a—0b)+ (b+c)x+ (a—c)z?

4. Determine whether the following transformation Cos — (oo are linear.

(a) T(a)=A* (b) T(A) = A*A
(c) T(A)=A+A (d) T(A) =iA

5. For each linear transformation from Prob. 1, determine kerI’ and
range T', find bases for kerT" and range T', and verify the equation
n(T) + R(T) = dim(domain 7). Sketch a “graph” of T" as in Exam-
ple 13 or 19.

6. For each linear transformation from Prob. 2, determine ker7T and
range T', find bases for kerT' and range T', and verify the equation
n(T) + R(T) = dim(domain T').

7. For each linear transformation from Prob. 3, determine kerI’ and
range T, find bases for kerT" and range T', and verify the equation
n(T) + R(T) = dim(domain T').
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Show that the zero transformation is linear.
Show that the identity transformation is linear.
Show that a contraction operator is linear.
Show that a dilation transformation is linear.

Show that a linear transformation 7: E? — E? defined by

1 _(a 0\ [z
()60 ()
transforms the circle 1% + 5% = 1 to the ellipse y;2/a® + 1,2 /b* = 1.

Draw the image under 7" of the unit square in E? for T defined by

o r(@)-(F

Show that the additivity condition T'(x +y) = T'(x) + T'(y) implies
that T'(nx) = nT'(x) for any positive integer n.

1

S5

Show that the additivity condition T'(x +y) = T'(x)+7(y) implies that
T((p/q)x) = (p/q)T(x), where p and q are positive integers. [Hint: By
Prob. 14, pT'(x) = T(px) = T(q(p/q)x) ]

Show that this definition is equivalent to Definition 4.1.1:

Let V and W be vectors spaces, and let T" be a function with
domain V and range in W. Then T is a linear transformation
if for all a,b € R, x,y € V, T(ax + by) = aT'(x) + b1 (y).

Let T: V — W be a linear transformation. Show that range T is a
subspace of W.

Complete the details of Example 9a through e.

Verify that the coordinate operator as defined in this section is linear.

) o ()= (e

)
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20. Verify that the momentum operator as defined in this section is linear.

21. Let T: E3® — E3 be linear, and suppose that 7((1,0,1)) = (1, -1, 3)
and 7'((2,1,0)) = (0,2, 1). Determine 7°((8,3,2)). [Hint: write (8,3,2)
as a linear combination of (1,0,1) and (2,1,0), and use the linearity of
T.]

22. Regarding T as in Prob. 21, calculate T'((1,2,—3)) and 7'((4, —4, 12)).

23. Regarding T as in Prob. 21, why can T'((3,0,4)) not be calculated from
the information given?

24. Define T': Py — Moy for each f in Py by

Is T a linear transformation?

25. Define T: My — Moy by

r(() =)

where M is an invertible 2 x 2 real matrix. Show that the image of a
line under T is again a line (Hint: Describe a line in the domain by
its vector equation; then use the linearity of T'.)

4.2 MATRIX REPRESENTATION PROB-
LEM FOR LINEAR TRANSFORMATIONS

The methods of Sec. 4.1 can be used to discuss systems of linear equations.
For a set of equations

Aananl = Bm><1

the matrix on the left-hand side represents a linear transformation from M,,;
to M1 because, by the laws of matrix algebra, A(cX + dY) = cAX +
dAY . The kernel of the linear transformation is the solution set for the
homogeneous equation AX = 6. The range of the linear transformation is
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the set of all vectors B for which AX = B has a solution. The “rank-kernel
equation” from theorem 4.1.3 of Sec. 4.1 means that

dim(solution space of AX = #) + dim(range) = n

However from previous chapters we know that the dimension of the solution
space is the number of zero rows of the reduced row echelon form of A. So
the last equation can be rewritten

(dim of solution space of AX = 6) + (rank A) = n = no. of columns of A

Example 1. Find the dimension of the solution space of AX = 6, where

1 2 -1 2
3 1 2 2
A= 2 -1 3 0
1 -2 4 =2

Solution Since n = 4, if we find A, then 4 — rank of A is the number we
desire. Since rank A = row rank A, we row-reduce A:

1 2 -1 2 1 2 -1 2
3 1 2 2 0 -5 5 —4
2 -1 3 ol "o o o o
1 -3 4 -2 0 0 0 0

to find rank A = 2. Therefore the dimension of the solution space of AX =6
is 2. Notice that this is also the number of unknowns which can be arbitrarily
set. Thus the terminology 2 degrees of freedom.

Example 1 illustrates this general principle:

If T is a linear transformation generated by a matrix A, then
n(T) and R(T) can be found by row-reducing matrix A.
That is information about a linear transformation can be
gained by analyzing a matrix.

For this reason (and others which appear later), representation of a linear
transformation by a matrix is important. Thus we come to the third basic
problem of linear algebra.
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Third Basic Problem of Linear Algebra

Given a linear transformation 7: V' — W, where dim V = n and
dim W = m, find an m x n matrix A which “represents” T

Before stating precisely what the word represents means, we consider
some simple examples.

Example 2. Consider the identity transformation T': E® — E3, defined
by T'(x) = x. Let X = (x)g, where £ is the standard ordered basis
{(1,0,0),(0,1,0),

(0,0,1)}. Then

X1
X = T
T3
when x = (x1, 22, 23). So
1 00 I T
13X3X: 010 i) = i) =X
0 01 3 T3

The action of the identity transformation is represented by matrix mul-
tiplication of coordinate matrices by the identity matrix I.

Example 3. Consider the projection P: E3 — E3 defined by P(z1, s, 13) =
(1, 2,0). For £ as in Example 2,

1 00 T I
MX = 010 T2 = T2
0 0O T3 0

we see that the action of P is represented by matrix multiplication by

M=

OO =
O = O

0
0
0

Note that P(P(X)) = P(X); also MM = M. We have the projection
represented by an idempotent matrix.
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Example 4. Consider differentiation D: P; — P; defined by D(a+bx) = b.
If we use the standard ordered basis £ = {1, z}, then

(@t = (})

v ()~ o)

w3
()= 60 ()= 0)

that is, the action of D is represented by multiplication by M. We note that

and we can write
Now the matrix

satisfies

D(D(a+bx)) =D(b+0zx)=0+0z =10

= (5a) 50) = (0 0)

The transformation D is represented by a matrix which is nilpotent of expo-
nent 2. This just means that the second derivative of a first-degree polyno-
mial is zero.

and

Examples 2 to 4 depend on the fact that we used the standard basis to
represent the vectors in each vector space. We will see that in general the
representing matrix depends on the bases used for the domain and
range.

Solution of Representation Problem The basic principle which leads to
the solution of the basis problem for a linear transformation 7: V — W is
as follows:

If dimV = n and {vy,vs,... ,Vv,} is a basis for V, then the range
of T' is completely describable in terms of the images T'(v1),... ,T(vy)
of the basis vectors.
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To see this, let x be any vector in V. There exist constants cy,... ,c,
such that x = vy + cove + -+ + ¢,vy,. Therefore, T'(x) = ¢1T(vy) +
2T (vy + -+ + ¢, T(vy,) and we see that every element 7'(x) in the range
is a linear combination of the images of basis elements. That is T'(x) €
span {T'(v1),... ,T(vn)}.

The setup and procedure for solving the representation problem are as
follows:

Suppose dimV = n,S = {vy,... ,v,} is an ordered basis for V,
and suppose dimW = m and 7 = {wy,... , Wy} is an ordered
basis for W.

1. Calculate T'(vy),T(va),... ,T(Vn).
2. Find the coordinate vectors (T'(v1)) 7, (T'(va)) 7, - .- , (T(v))T-

3. Write the matrix with columns as the column vectors calcu-
lated in Step 2:

M = ((T'(v1)r(T(v2))r - (T(va))1)

The m x n matrix M represents 7', as indicated in Fig. 4.2.1. Whenever
necessary, we write Mr to denote the matrix of 7. The diagram gives the
content of the theorem that we will state for the solution of the representation
problem. Before spelling out the theorem, we consider several examples. In
these examples, we write (V,S) to indicate the vector space V' with basis S

Example 5. Let T: (E% S) — (E? T) be defined by T((z1,72)) = (21 +
2x9,x1 — T3). Find the matrix M representing 7" when

(a) § =T = {ey, ey}, the standard basis

(b) §=T={(1,2),3,-1)}

() §=T={3,-1),(1,2)}

(d) §=A{(1-1),1, D} T ={(1,0),(0, -1)}
() S ={(1,-1),(1, D}, T ={(0,-1),(1,0)}

In each case, calculate T'((3,2)) directly and by using M.



290 CHAPTER 4. LINEAR TRANSFORMATIONS

Solution (a) T(e;) = (1,1) = 1(1,0) + 1(0,1) 0 (T(e))y = >
T(es) = (2,~1) = 2(1,0) + (~1)(0,1) so (T(es))r = )

=14

Now T'((3,2)) = (7,1) from the definition of 7. But

The matrix is

SO

o= (3)=(1 ) (3)-()

) —mo-ns

In this case, since S = 7, we say that M is the matrix of T" with respect
to S. Also, since S = 7 = the standard basis, M is called the standard
matrix of 7.

(b) We work as in (a):

T((1,2) = (5,-1) = 3(1.2) + $(3,-1) 5o Uﬂ@h:(a)

and finally,

=N

w

T((3,-1) = (1,4) = 2(1,2) + (-$)(3,-1) so (T(3,~-1))r =

)

~o Y

So we have the matrix of T with respect to S:

From the definition of T',7'(3,2) = (7, 1); since

((3,2))s = ( )

LS I Ne3E | Ne
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)

( : ) — 2(1,2) + 2(3,-1) = (7,1)

(c) The case differs from (b) in that the order of S has been reversed.
The calculations, however, are similar:

T((3.-1) = (1,4) = =36, ~D + £(12) so (T(3,~1))7 = ( _12 )

using the matrix M we have

[y
w

(T'(3,2))r =M (

ks o
SN——
|
Y
SN—
|
Y
~l@ s
SN—

—
| [
~o Y

e o

Finally

T(1,2) =6~ =7G-D+3(12) so (T(1,2)r= ( f )

Therefore the matrix of T" with respect to S is

2 1

_ 7 7
M= 17
7 7

Note that this matrix differs from the representing matrix in (b) in that an
interchange of rows and columns has occurred. Calculations of 7°(3,2) is left
to the reader.

(d) In this case S # T, but our usual procedure can be used.

T((1,-1)) =(-1,2) = —1(1,0) + (=2)(0,—-1) so (T'(1,—-1))r <

-1
—2
T((1L1) = (3,0)=3(1.0) +00.-1)  so  (T(L1)r = (3)
The matrix of T" with respect to S and 7 is

w= (43

Now to calculate T'(3,2) in two ways, 7(3,2) = (7,1) by definition, but we

also have
((3,2))s = ( )

ot N



292 CHAPTER 4. LINEAR TRANSFORMATIONS

o

(e) The details of this case are left to the reader. The matrix in this case is

w=(229)

Note that the difference between (d) and (e) is that the order of the basis
in the range is reversed. This resulted in an interchange of rows in the
representing matrix.

and

N[O N[

> - < _I) — 7(1,0) + (=1)(0,-1) = (7,1)

Having solved some examples, we now state and prove the theorem which
furnishes our procedure for the solution of the representation problem

Theorem 4.2.1. (Solution of the representation problem) LetT: V — W,
where dimV = n and dimW = m, be a linear transformation. Let & =
{vi,..., v} and T = {wy,... ,w,,} be bases for V and W, respectively.
There ezists an m x n matriz M (unique to the ordered bases S and T ) with
the property that for any x € V, (T'(x))r = M(X)s.

Proof. Let x € V. Because S is a basis, there exists a unique set {cy,... ,¢,}
of constants such that x = ¢;vi +covo+- - -+, vp. Now T'(x) = 1 (T(v1)) +
c2(T(v)) + -+ + ¢u(T(vy)) by the linearity of T. For each k (1 < k < n),
T'(vy) is in W and can be represented by the basis elements for W

T(Vi) = a1xW1 + QW2 + -+ - + Gk Wy
Therefore,

T(X) = Cl(CLnWl + aoyWo + - -+ + amlwm)
+ ca(@19W1 + A2oWa + -+ + AaWp,) + - - -

+ (a1, W1 + a2a W2 + - + A Win)
and after collecting terms we have

T(x) = (a11¢1 + ar2¢2 + - - - + Q1Cn) W1
+ (aglcl + axpco + - - - + a2ncn)w2 4+ ...

+ (amic1 + amacCa + -+ + AmnCn) Wi,
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The coefficients of wq,...,w,, in the last expression are exactly the row-

column products from

C1 a1x  a12
M = | Q21 Q22
Cn Am1 Am2

Q1n 21
(0579 .2
U, Cn
/
(T'(vn))T

Therefore the m x n matrix M, the columns of which are the coordinate
vectors of T'(vy),... ,T(vy,), is the desired matrix. The matrix is unique to
the pair of bases since coordinate vectors are unique in a given basis. [l

Example 6. Let T: P; — P, be defined by T'(a+bx) = azx + (b/2)z%. Give
P, and P, the standard bases S = {1,z} and 7 = {1, x, 2%}, respectively.
Find the matrix of T" with respect to these bases. Do the same for L: Py —

Py defined by L(a + bz + ca®) = b + 2ca.

Solution Now 7'(1) =z, so

0
(T(1))r = |1
0
Likewise, T'(z) = 327, so
0
(r@)r = (0
2

Therefore the matrix My representing 1" is

0

5

I
O =
= O O
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(L(1))s = (8) (L(z))s = (é) (L(2"))s = (g)

and the matrix M}, representing L is

010
ML_(O 0 2)

10
MpMr = <O 1> =1

so that we could call My, a left inverse of M. However,

Thus

Note that

000
MyM,=10 10| #£1
001

and My is not a left inverse of M;. Note that T is just antidifferentiation
with arbitrary constant set to zero. When we antidifferentiate and then
differentiate, we get the original function back. This is reflected by M My =
I.

Example 7. Let T: Mayy — My, be defined by T(A) = A— AT, Give My,
the standard basis

{006 D)o

and find the matrix for 7" with respect to S.

Solution First we calculate the images of the basis vectors:

T(((l) 8))2(8 8>:Oe1+0e2—|—0e3—|—0e4
T((g é))z(_(l) é):Oe1+e2—e3+0e4
T(((l) 8))2(? _é):Oel—e2+e3+0e4
T((g (1)>>:<8 8>:Oe1+0e2—|—0e3—|—0e4
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Therefore,
0O 0 00
0o 1 -1 0
M= 0 -1 10
0O 0 00

Example 8. Define T: C? to C? by T'((21, 22)) = (iz1, (1 +14)22 — 21). Let
C? have the basis S = {(4,0), (0,1)}. Calculate Mr.

Solution

T(i,0) = (—1,—i) = i(,0) + (—i)(0, 1)
T(0,1) = (0,1 +4) = 0(,0) + (1 +4)(0,1)

i 0
MT_(—z’ 1+z‘)

Some Algebra of Linear Transformations Let VV and W be vector
spaces, and let L and T be linear transformations from V to W. We can
define the scalar multiple rL of L and the sum L 4+ T of L and T as linear
transformations from V' to W by the rules

Therefore

(rL)(v) = r(L(v)) r a number, v in V'
(L+T)(v)=Lv)+T(v) vinV

If My, and Mr are the representing matrices with respect to bases S and 7,
respectively, then r M|, represents rL and My + Mr represents L + 1. This
can be shown by the method of proof in Theorem 4.2.1.

Example 9. Consider T as defined in Example 5a, and define L: E? — E?
by L((z1,x2)) = (22, 21). The standard matrices for 7" and L are

1 2 01
w= (1) me=(i )
So T + L is defined as

(T + L)((w1,22)) = T((w1,72)) + L((71,22))
= (.’L‘l + 2%‘2, 1 — CCQ) + (IL‘Q, 561)

= (1’1 + 31’2, 21‘1 — 1‘2)
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and 77 is defined as

(rT)((z1,22)) = r(T((x1,22))) = r(x1 + 229, 21 — X2)
= (ray + 2rxe, rry — 1)

The standard matrix for 7"+ L is

(2 1)

and the standard matrix for r7 is
r  2r
r o —r

Mrpryr, = Mr + My,
M., = rMj,

Direct calculation shows that

PROBLEMS 4.2

1. For the following sets of homogeneous equations AX = 0, find rank A,
dim (solution space), and verify that

dim(solution space) + rank A = no. of columns of A

1 -1
b) A=[0 1
1 0

W~ N

1
(a) A= |4
7

oo Ot N

=N NN O O W
|

W O = =
=~ = W
—_ == O

2. For the following transformations 7': V — W, find the matrix of T,
assuming the standard basis in both V and W.

(a) T: E? — E?, T((z1,72)) = (371,272 — bxy)
(b) T: P, — E?, T(az+0b) = (3a,2a—>5b) for P;, S = {1,z}
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(c) T: E? — E3, T((z1,22)) = (z1, 21 + 22,321 — X2)
(d) T: Py — Py — T(az* +bx +¢) = cx + b for Py, S = {1, 2,27}

(&) T: Moy — M, T(<a Z)) = (2 Z)
07 Mu— st 1((2 1)) ()

3. Let T: E3 — E? be defined by T'((x1,z2,23)) = (x1 — T2 + 23,79 —
73), let E? have the standard basis, and let E? have the basis S =

{(17 1)7 (17 _1)}
(a) Find the matrix of 7" with respect to these bases.
(b) Calculate T'((1,—1,2)) directly and by using the matrix of 7.

e}

o

4. Let T: E* — E? be defined by T'((z1, 2, 23)) = (21 + 2o, T2 + 73, T3 +
71), and let E? have the basis S = {(1,1,0), (0,1,1), (1,0, 1)}.

(a) Find the matrix of 7" with respect to S.
(b) Calculate T'((1,1,1)) directly and by using the matrix of 7.
5. Let T: E? — E? be alinear transformation with the property 7(1,1) =

(1,0) and T'(1,—1) = (0,1). Find a matrix representation of 7. [Hint:
For the domain use S = {(1,1),(1,—1)} as a basis.]

6. Define L: E™ — E" by L((x1,z2,x3,... ,Zn)) = (2,23, ... ,Tyn,0) and
define R: E™ — E" by R((x1, 2, 23,... ,2,)) = (0,21, T2, T3, ... , Tp_1).
Find the matrices for L and R with respect to the standard basis.

7. Show that the matrix representing the zero transformation is the zero
matrix regardless of basis.

8. Show that a contraction or dilation transformation from V' to V has a
diagonal matrix representation regardless of the basis given to V' (same
basis in domain and range).

9. Let T be defined by T': P,, — P,1 as the coordinate operator



298 CHAPTER 4. LINEAR TRANSFORMATIONS

Show that the standard matrix of T is

o o0 o0 -0
1 0 0 0
0 1 :
: 0
o --- 0 1 0
0 o0

(n+2)x (n+1)

10. Let T be the momentum operator defined at the end of Sec. 4.1. Given
that P,* has the standard ordered basis {1,z,...,2"}, show that the
standard matrix of T is

0 —1 0 o o0 --- 0
0 O —21 o o0 --- 0
0 O 0 -3 0 -~ 0
: : .. .. 0
0 0 0 --- —ni

nx(n+1)

11. For the following transformations 7': V' — W, find the standard matrix
of T.
(a) T: C* — C*T((21,22)) = (21 + 22,120)
(b) T (CB — CQ,T((Zl, 29, Zg)) = (iZQ,iZg, 0)
(C) T CQQ — CQQ, T(A) =A + ZAT

4.3 SIMILAR MATRICES AND CHANGE
OF BASIS

The purpose of a matrix representation M for a linear transformation 7' is
to enable us to analyze T' by working with M. If M is easy to work with,
we have gained an advantage; if not, we have no advantage. Since different
bases lead to different matrices, the “right” choice of basis to obtain a simple
matrix M is important. The right choice of basis is not obvious, as Example 1
shows.
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Example 1. Show that T: E? — E? defined by T'(z1, x2) = (21 +6x2, 311+
4x5) has standard matrix
16
69

Then show that, with respect to the basis 7 = {(2,-1),(1,1)},T has a
diagonal matrix representation.

Solution For the standard matrix we have

—_

T((1,0) = (1,3) =1(1,0) +3(0,1) ~ so  (T((1,0)))sta =

w

)
y

T((0,1)) = (6,4) = 6(1,0) + 4(0,1) 50 a«anmm=<

16
MStd = (3 4)

T((2,-1)) = (~4,2) = =22, 1) +0(1,1) o wmmmfz<_3)

and

But with respect to 7,

T((1,1)) =(7,7) =0(2,-1) + 7(1,1) SO T((1,1))]r =

and the matrix with respect to 7 is

-2 0
v-(707)

We recall from matrix algebra that diagonal matrices are easy to work
with for certain operations: inversion, determinants, and multiplication, to
name three. As the dimension of the vector spaces (and size of the matrices)
grows, this is even more the case. We need, then, to find a way of getting
the simplest possible matrix to represent a transformation 7. To solve this
problem (a solution is presented in Chap. 5), we must discover how to re-
late different matrix representations for the given linear transformation. We

restrict our attention to the case V = W with the same basis in V and W.
This case occurs most frequently in applications.
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To discover the relationship, suppose that Ms) is the matrix representing
T: (V,S)— (V,S) and that M7y represents T': (V,7) — (V,T). Let P be
the transition matrix from basis 7 to basis S, so that for any x in V/,

M) (x)7 = (X)7 = P 1 (Tx)s = P~ (M(s)(xs)
= P 'MsI(x)s
= P 'Ms(PP M)(x)s
= (P M5 P)(P ' (x)s)
= (P7'Ms)P)(x)1

Therefore
My (x)7 = (P"'M(s)P)(x)7 forall x in V

so that M1y = P=1M, (s)P. These equations actually give a proof of the basic
result.

Theorem 4.3.1. Let T: V — V be a linear transformation with matrix
M sy with respect to a basis S and with matriz M1y with respect to a basis
T. If P is the transition matrix from basis T to basis S, then

M(T) = PilM(S)P
The relation My = P~'Ms)P is important enough to be given a name.

Definition 4.3.1. Two n X n matrices A and B are similar if there exists
an invertible matrix P such that B = P 1AP.

Note that the definition in no way tells us how to find the similarity
transform P. In the case of two representation matrices for a linear trans-
formation, P is a transition matrix from one basis to another, as we saw in
Theorem 4.3.1.

An important restatement of Theorem 4.3.1 is as follows:

Let T: V — V be a linear transformation. Any two representing
matrices of 1" are similar.

Example 2. In Example 1, denote the standard basis by S. Illustrate The-
orem 4.3.1 for T, S, and 7, as given in Example 1.
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Solution The standard matrix, as before, is

1 6
M(s): (3 4)

Now calculate the transition matrix from 7 to S:

Wl W~
wWIro wol—

Wl Wi~ Wl Wl

I
VRS
|
SN
|
~N O whv wi— W Wl
~—
VRS
|
N W~
NN
N~

One way to remember how to relate matrices with respect to S and 7 is
to use the diagram

(V, %)@ >T > Mg > (V, %)@VIVP‘s(_gV@APg(_SAIA(V, 8)@ > Ms>T > (V, 8)

The point is that the transition matrix is just the matrix which represents the
identity transformation. The notation P4. g indicates the transition matrix
from B to A. Note that
My =Pr_sMs) Ps—t
N TS

All the same

and remember that Pr._ s = (Ps_7)""

To exploit fully the result of Theorem 4.3.1, we will later use some prop-
erties of similar matrices.
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Theorem 4.3.2. The following statements regarding similarity are true. In
all cases the matrices are n X n.

(a) Matriz A is similar to A.

(b) If A is similar to B, then B is similar to A.

(c) If A is similar to B and B is similar to C, then A is similar to C.
(d) If A is similar to B, then det A = det B.

(e) If A is similar to B, then tr A = tr B.

(f) If A is similar to B, then A™ is similar to B™ for any positive integer
m.

(g) If A is similar to B, then A is invertible if and only if B is invertible.
In that case A~' is similar to B~ '.

[Note: Parts (d), (e), and (g) state, respectively, that the determinant,
trace, and invertibility are invariant under similarity.]

Proof. (a) Since A = TAI = I"'AI, A is similar to A.

(b) If Ais similar to B, then B = P"'AP. Thus PBP! = P(P'AP)P ™! =
A. Thus A = (P7Y)"'B(P!). Calling P! by the name P, we have
A =P~ 'BP, and B is similar to A.

(c) If A is similar to B and B is similar to C, we have B = P~ 'AP and
C = Q7 'BQ, where P and Q) are, in general, not equal. Now we have

C=Q (B)Q=Q (PT'AP)Q = (Q"'PHA(PQ) = (PQ) " A(PQ)
Since PQ is invertible, C' is similar to A.
(d) If B=P 'AP, then

det B = det(P 'AP)
= (det P~")(det A)(det P) = (det A)(det P~")(det P)

— (det A) (ﬁ) (det P) = det A
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(e) If B= P 'AP,sincetr (AB) = tr (BA) wehave tr B = tr (P"'AP) =
tr (P~'A)P) =tr (P(P7'A)) = tr A.

(f) If B= P~'AP, then
B*= (P 'AP)* = (P"'AP)(P'AP)
= (P 'A)(PP ') (AP)
=P 'A’P
Thus B? is similar to A% and has the same similarity transform P.

Now we use induction. Suppose for the induction hypothesis that A* is
similar to B¥ with B¥ = P~'A*P. Now we show that B**! is similar
to A¥1. By the induction hypothesis

B = ptAFP
Now
B*l = BplAFpP = (P'AP)P T ARP
— P 'AIARP
= plAFp

Therefor B¥*! is similar to A**! with similarity transform P. By the
principle of mathematical induction, (f) is proved.

(g) Since det A = det B, we know that det A # 0 if and only if det B # 0.
For the second part note that

A=P'BP,A'=(P'BP)' =P 'B P )y '=P'B'P
O

Parts (d) and (e) are illustrated by the similar matrices

(9w (29)

from Example 1. Both matrices have trace 5 and determinant —14.

The problem of determining whether two given matrices are similar is
generally difficult. But parts (d) and (e) can be used to rule out similarity:
If tr A # tr B or det A # det B, then A cannot be similar to B.
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Example 3. For the following pairs of matrices, determine whether A is
similar to B.

1 —1 2 1
@ a=(575)  2=(3))

2 6 2 11 3
(by A= 51 -1 B=1[0 1 2

4 1 3 2 25

11 1 0
(c) A_(O 1) B‘(o 1)

Solution

(a) Although tr A =tr B,det A # det B, so A is not similar to B.
(b) Since tr A # tr B, matrix A is not similar to matrix B.

(c) In this case, the traces and determinants of A and B coincide, so sim-
ilarity cannot be easily ruled out. Since A and B are small, we can
check the equation

B=P'AP

If this is to hold, we must have
PB = AP

for a nonsingular matrix p. Let

r=(c )

Then the required equation is
a b\ (1 0y (1 1\ fa b
c d/J\0 1) \0 1)\c d

a=a+c=0=c
b=b+d=0=d
c=c =c=c
d=d =d=d

which leads to
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Therefore a and b are arbitrarily, and ¢ = d = 0 which leads to

(1)

which is singular. Therefore A is not similar to B. For large matrices,
this method of solution is not practical.

PROBLEMS 4.3

In Probs. 1 to 9 a linear transformation 7': V — V and bases & and 7 are
given.

(a) Find the matrix of 7" with respect to S.
(b) Find the matrix of T" with respect to 7 by using the transition matrix.

(c) Find the matrix of T with respect to 7 directly.

1. T: E2 — EQ,T((£L‘1,£L‘2)> = (131,0)
S = standard basis 7 ={(1,1),(1,-1)}

2. T: E2 — EQ,T((CCl,CCQ)) = (21‘1, 2562)
S = standard basis 7={(1,1),(1,-1)}
(This is a dilation. Compare the result of this problem with Prob. 8 of
the last section.)

3. T: E? — E?,T((w1,20)) = (21 + 79,27, — 312)
S = standard basis 7 ={(1,1),(1,-1)}

4. T as in Prob. 3
S:{(171)7(17_1)} T:{(171)7(172)}

5. T: E? — E?, where T is rotation through /4 radians counterclock-
wise.

S = standard basis 7 = {(1,1),(1,2)}

6. T: E* — E*, T((x1,29,23)) = (@1, 21 + T, Ty — T3)
S = standard basis 7 ={(1,1,0),(-1,1,0),(0,0,1)}

7.T: E?— E3T((z1,72,23)) = (21 + 272, 71 + T2 + 73, 73)
S = standard basis 7 ={(1,1,0),(0,1,1),(1,0,1)}
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T: P — P, T(a+br) =a+b+ (2a — 3b)z
S = standard basis T={l4+21-2z}

T M22 — MQQ,T(A) = AT

) 11 00 10 10
S = standard basis T—{(O 0),(1 1),<1 O)’(O 1)}

Show that if A is similar to B and A is invertible, then A=* is similar
to B fork=1,2,...

Pairs of matrices A and B are given. In each case show that A and B
are not similar.

1

)

3
3
1 2
4
7

)

Show that if A and B are similar matrices, then rank A = rank B.
(Hint: Use the fact that similar matrices represent the same linear
transformation.)

—
(@]
N—
s
|
VR
— N
N O
N~
Sy
|
N\
[anll V]
N O 0o
O O W

Compare the results of Probs. 3 and 8. Is there a reasonable identifi-
cation of the transformations (and V') in these problems?

Let M be an m x n matrix. Let V be an n-dimensional vector space
with basis S, and let W be an m-dimensional vector space with basis
T. Let x be in V. Define a transformation L from V' to W by this rule:
L takes x in V to y in W as follows:

1. Replace x by (x)g, the coordinate matrix of x.
2. Calculate M (x)s.
3. Let y be the vector in W with (y)r = M(x)s.

Show that L so defined is linear. This means that any matrix generates a
linear transformation.
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4.4 INVERTIBLE TRANSFORMATIONS AND
CLASSIFYING TRANSFORMATIONS

One of the most important problems in applied mathematics is to solve
T(x)=y (4.4.1)

where T': 'V — V is a linear transformation, V' is a vector space, y is given,
and x is to be found. If V' is given a basis S = {vi,...,v,} and M is the
matrix of T" with respect to S, then the corresponding matrix problem is

M(x)s = (y)s (4.4.2)

which is the first fundamental problem of linear algebra. So we can see
the importance of the representation problem in reducing transformation
equations in applied mathematics to matrix equations. If we solve Eq. (4.4.2),
we have essentially inverted the transformation 7. This concept must now
be developed.

Definition 4.4.1. Let T: V — W and L: W — Z, where V,W, and Z
are vector spaces. The composition of L and T, denoted Lo T, is defined for
x € V by

(LoT)(x) = L(T'(x))

Pictorially the situation in Definition 4.4.1 is shown in Fig. 4.4.1. It is
not hard to define longer strings of compositions L(7(U(x)) and to see that
(LoT)oU)(x)=(Lo(ToU))(x).

Example 1. Let T: E? — E®and L: E* — E? be defined by T'((x1,z2)) =
(x1, 21 + m,x2) and L((z1,x9,23)) = (21 — x2,22 — x3). Calculate (L o
T)((x1,22)). Show that L o T is a linear transformation. Determine the
standard matrices for L,T, and L oT. Show that the matrix of L o T is the
product of the matrix of L and the matrix of 7.

Solution By Definition, (L o T)((z1,z2)) = L(T(x1,22)) = L((x1,21 +
T2,22)) = (1 — (1 + z2), (z1 + @2) — x2) = (—x2,21). Now let (z1,x2)
and (y1,y2) be two vectors in E?. We have (L o T)((x1,x2) + (y1,%2)) =
(L o T)((CCl + Y1, 22 + yg)) = (—(CCQ + yg),xl + yl). Also (L o T)((CCl,CCQ)) +
(LoT)((y1,92)) = (—m2,21) + (=y2,41) = (=22 — Y2, 21 + y1). It is easy to
show that (L o T')(r(z1,22)) = r(L o T)((x1,x2)); therefore L o T is linear.
By the methods of Sec. 4.3 we have the following:
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TRANSFORMATION STANDARD MATRIX

1 -1 0

L ML_(O 1 —1)
10
T Mr=111
01

0 —1

LoT MLOT:(l 0)

Furthermore,

10
M My — 1 -1 0 1 1) = 0 -1 — Myur
0 1 -1 01 1 0

Note that My M, # M.r. This reflects something we already know: Matrix
multiplication is, in general, not commutative.

Example 1 illustrates the following theorem.
Theorem 4.4.1. If T: (V,S) — (W,T) and L: (W,T) — (Z,B) are lin-

ear, then (Lo T) : (V,S) — (Z,B) is linear. If My, My, and Mr.r are the
matrices representing T, L, and L o'T’, respectively, then

MLoT = MLMT

Proof. For the linearity, let u and v be vectors in V', and let r» and s be
numbers. By the linearity of L and T separately, (LoT')(ru+sv) = L(T(ru+
sv)) = L(rT(u)+sT(v)) =rL(T(u))+sL(T(v)) = r(LoT)(u)+s(LoT)(v).
Thus L o T is linear. To show that the matrix representation, let x € V,
T(x) =y, and L(T(x)) = z. Now (y)r = Mr(x)s and (z)g = M.(y)r.
Therefore (z)g = M (Mr(x)s) = (M Mr)(x)s. But we also have

(z)p = Mror(X)s
By the uniqueness of matrix representation,
Mrpor = M Mr

The idea of the composition of transformation is set; we can define the
inverse of a transformation. O
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Definition 4.4.2. Let T: V — V be a linear transformation. The (two-
sided) inverse of T is a transformation T~': V — V for which

(T7'oT)(x)=x forallxeV

and
(ToT™M(x)=x forallxecV

If T7! exists, the T is called invertible.

We note that 77! is linear. In fact, T-'(x+y) = T (T(T'(x
T(T7(y))) = T7H(T(T7'(x) + T7'(y))) = (T7'T) (T~ (x) + T\ (y
T (x) +T Yy) and T (rz) = T '(rT(T(x)))

(T 17)

(rT'(x)) = rT'(x). Other important properties of inverses are contained
in Theorem 4.4.2.

Theorem 4.4.2. Let T: (V,S) — (V,S) be a linear transformation.

(a) Let M be the matrixz of T with respect to S. Then T is invertible if
and only if M~ exists. Moreover, the matriz for T~ in this case is
precisely M 1.

(b) T is invertible if and only if n(T) = 0 [that is, dim(ker T') = 0/.

(c) T is invertible if and only if T(x) = T(y) implies that x =y for all
x,y € V. (That is, T is a one-to-one function.)

Proof. (a) = Since (T o T71)(x) = x, we have
(matrix of T times matrix of T7')(x), = (x),
If My—: denotes the matrix for 7!, the last equation is
MMrs (%), = (%),

which means that M Mp-1 = I. Therefore Mp-1 = M 1.

(<) Suppose M~ exists. Since it represents a linear transformation L
and MM~" = M~'M = I, we know that (LoT)(x) = x and (T'o L)(x) = x.
Thus L = T, and T is invertible.

(b) Let dimV =n and M be the matrix of 7"
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(=) Suppose T is invertible and 7(7) > 0. Then since n(7)+ rank
T = n, rank T < n. Therefore rank M < n and M~! does not exist, a
contradiction since if 77! exists, M ~! must exist.!

(<) If n(T) =0, then
n(T) +R(T) =n

we have R(T') = rank T" = n. Thus rank M = n and M exists. Reasoning
as in (a) now, we see that 7! must exist.

(c) (=) Suppose T is invertible and there exist x' and y’ in V with
x' #y and T(x') = T(y’). Then x' —y’ # 6 and T(x' —y’) = 0. But then
dim(ker T") # 0. That is, n(7") # 0, which contradicts (b).

(«<=) Suppose T'(x) = T'(y) implies that x =y for all x,y in V' and that
T is not invertible. Then by (b) dimker 7" # 0. Therefore ker 7" contains at
least € and some z # 6. Now since kerT" is a subspace, z — 6 € ker T'. Thus
T(z—0) =T(z) —T(0) = 6. So we have T(z) = T'(0), but z # 0, which
contradicts our assumption.

Part (a) of Theorem 4.4.2 tells us that we can determine the invertibil-
ity of a transformation by determining the invertibility of any representing
matrix. This is so because if A and B are any two representing matrices,
then they are similar: A = P~'BP. Now since det A = det B, matrix A is
invertible if and only if matrix B is invertible. So if one representing matrix
is invertible, all are. O

Example 2. Define T: E3 — E3 by T(x) = T((z1,79,73)) = (bxs —
Cxa,Ccr1 — ax3, axs — bry). This transformation maps (1, x2, z3) to (a, b, c) X
(21, 2, x3), the cross product of the fixed vector (a, b, c) with x. Show that
T is not invertible, thereby showing that we cannot determine a vector from
its cross product with a known vector (a, b, ¢).

Solution We will find a matrix M representing 7" and show that M ™!
does not exist. Since invertibility is preserved by similarity, we may use any
representing matrix to determine invertibility. We use the standard matrix
since it is easiest to compute. We have

7(1,0,0) = (0, ¢, —b)
7(0,1,0) = (—¢,0,a)
7(0,0,1) = (b, —a,0)

IProb. 12 of Sec. 4.3 shows that rank T is defined as rank Mry.
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so the matrix is

0 —c b
M = c 0 —a
-b a 0

Note that M is antisymmetric. Now det M = abc — abc = 0, so M~! does
not exist. Therefore T is not invertible.

Example 3. (Shear revisited) Imagine a cube of gelatin held between the
hands as viewed from the side in Fig. 4.4.2a. Suppose the upper hand is
moved to the right k£ units (k is small). Then the height of the gelatin will
not change much, and the side view will look like a parallelogram. This action
in mechanics leads to shear. In Fig. 4.4.2b, some vectors are imposed on the
face of the gelatin. Assuming that the shear is a linear transformation
S, find a matrix representing S and show that S is invertible. (Invertibility
is reasonable: To “undo” the shear, we can just move the top hand back to
its original position.)

Solution As stated before, the basic principle for finding matrix represen-
tations is that a linear transformation is determined by its action or basis
elements. Since S = {(1,0), (0,1)} is a basis for £?, the actions of S on (1,0)
and (0,1) can be used:

S((1,0)) = (1,0) = 1(1,0) 4 0(0, 1)
S((0,1)) = (k,1) = k(1,0) + 1(0, 1)

Therefore the matrix M of S with respect to S is

i3

Matrix M is invertible; therefore by Theorem 4.4.2a, S is invertible. Note

that
4 (1 -k
= (5 7

which represents shear with the upper face of the cube moving —k units to
the right, which means k units to the left. This, of course, makes sense: To
undo moving the upper hand to the right, simply move it to the left the same
distance.
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Example 4. Consider a square as shown in Fig. 4.4.3. Let R be a counter-
clockwise rotation about ¢ of 90°. Show, using matrices, that four successive
applications of R give the identity transformation.

Solution We find the standard matrix of R and calculate its fourth power.
Since R(1,0) = (0,1) = 0(1,0) + 1(0,1) and R(0,1) = (—1,0) = —1(1,0) +
0(0, 1), the standard matrix is

ue(200)

M2:<_(1) _2) and M*'=M*M*=1

Classifying Linear Transformations We have seen that if a matrix A is
invertible and a matrix B is similar to A, then B is invertible also. That is,
invertibility is preserved under similarity. As a result of Theorem 4.2.2a, we
say that a linear transformation 7" is invertible if any matrix representation of
T is an invertible matrix. Because other properties of matrices are preserved
under similarity, we make the following definition.

Definition 4.4.3. Let P be a property of matrices which is preserved under
similarity. We classify a linear transformation 7': V' — V as having property
P if in some basis the matrix representing 1" has property P.

Example 5. Show that the property of idempotency is preserved under sim-
ilarity.

Solution Let A be idempotent (that is, A2 = A), and let B be similar to
A: B=P'AP. Now B*> = (P7'AP)(P7'AP) = P'AIAP = P7'A?P =
P~'AP = B. Therefore B is idempotent.

Example 6. Show that the linear transformation T: E® — E® of projection
T((x1,22,23)) = (21,0, 23) is idempotent.

Solution By Example 5, idempotency is preserved under similarity. All we
need to do is to find a matrix representation of 7" which is an idempotent
matrix. We look at the standard matrix, which is easiest to compute. It is

1 00
M=10 00
0 01
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Now M? = M, so T is idempotent.

Another property preserved under similarity is nilpotency.

Example 7. Show that nilpotency is preserved under similarity. Then show
that the left-shift linear transformation 7: E* — E* defined by T'(z1, o, 73, 74)
= (z2, T3, x4,0) is a nilpotent transformation.

Solution Let A be nilpotent of exponent k, so that A* = 0. If B is similar
to A, then B¥ = P~'A*P by Theorem 4.3.2f. Thus B* = P~'0P = 0, and
B is nilpotent of exponent k. The standard matrix for 7" is

0100
0010
M_OOOI
0000
The powers of M are
0010 0001
> 10 001 3 10000 i
M_OOOO M_OOOO M==0
0000 0000

Therefore T is nilpotent of exponent 4. So four successive applications of
T produce the zero vector. Note that 7T is not invertible because M is not
invertible. The noninvertibility makes sense because when we shift left, we
lose entirely the information from the first component.

Linear Equations (Reprise) As we said at the beginning of this section,
the problem of solving

Lix)=y

for x in V, given the linear transformation L: V — V and y in V, is
a generalization of the first basic problem of linear algebra. When V is
finite-dimensional, the problem reduces to the first basic problem of solving
linear equations once a basis is assigned to V' and a matrix representing L
is found. In this case the equation L(x) = y is uniquely solvable if and
only if Mj, is invertible. When Mj, is not invertible, dim(ker L) # 0 and
the general solution is of the form p + h where p is a particular solution
of L(x) = y and h is a solution of the associated homogeneous problem
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L(x) = 0. (See Theorem 1.5.5.) To illustrate this, consider L: Py — Ps,
where L is differentiation. We wish to solve L(f) = ¢g. The standard matrix

for L is
010

M=10 0 2
000

The matrix is not invertible, so we cannot expect a unique solution. Let

a
(9)s= 1[0
c
Then
a
M(f)s=1|b
c

can have a solution if and only if ¢ = 0. When ¢ # 0, g is not in the range of
L. Now when ¢ = 0, g is in the range of L, and using the matrix equation

M(f)s = (g)s
we find
k
(Ns=| a
b/2

where k is arbitrary. That is, f(z) = k+ az + bz?/2, where the constant k is
arbitrary (remember antiderivatives and the arbitrary “constant of integra-
tion”?). Note that p(z) = ax + bx?/2 is a particular solution of L(f) = g,
and h(z) = k is the most general solution to L(f) = 6. Thus the general
solution, which exists only when g is not a quadratic (¢ = 0), is of the form
p + h, where h is in the kernel of L.

For a pure matrix problem consider

r+y— z+ w= 1
2z +y - w=-2
r + z—2w=-3

y—2z4+3w= 4
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The equations are equivalent to

oSO O
o O = O
O O N
S O Wi
O O = W

Thus the solution exists but is not unique. A particular solution is obtained
by putting z = 1 and w = 1, which leads to y = 3 and z = —2. Looking at
the associated homogeneous system

10 1 =210
01 -2 3|0
00 0 0]0
00 0 0]0
we find a solution
25 —r
h— 2r — 3s
r
s
Thus the most general solution is
-2 2s —r
3 2r — 3s
p+h= 1 .
1 s

The preceding examples illustrate the following theorem, which is stated
without proof.

Theorem 4.4.3. Let V' be a vector space with dimV > 1, and consider the
linear equation

Lx)=y

where L: V. — V is linear, dim(range L) > 1, and y is in V. Ify is in
the range of L, then either (a) the equation has a unique solution or (b) the
equation has an infinite number of solutions which are of the form p + h,
where h is the general solution of L(x) = 6 and p is any particular solution
of L(x) =y. Ify is not in the range of L, then the equation has no solution.
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Finally let us consider a case which can arise in applications: attempting
to solve L(x) = y when y is not in the range of L: Theorem 4.4.3 tells us
that a solution in the usual sense cannot be expected but if an inner product
can be defined on V', we could call a vector X an approximate solution if

IL(%) —y|* < |IL(x) — y]? for all x in V
Consider, the problem of solving

.’E1+CC2:2

I‘1+£L‘2:1

which has no solution. Defining L: My — My by
,f[,’l . 1 1 1:1
() -G G)
2
1

the right-hand side of the equations, is not in the range of L. Using the
standard inner product on My, we have

I 2
((2)-0)
Methods of calculus show that this last expression is minimized if x1+z5 = %;
this does not yield a unique approximate solution. One way to avoid this
problem is to require that the approximate solution be of minimum norm

(in this case, the one closest to the origin). With this requirement we obtain
T = (%, %) (see Fig. 4.4.4). Finding minimum norm solutions leads to the

concepts of generalized inverses and regularization, which the interested
reader can find in texts such as Regression and the Moore-Penrose
Pseudoinverse, by A.E. Albert (Academic Press, New York, 1972).

we see that

2
:($1+$2—2)2+($1+£€2—1)2

PROBLEMS 4.4

In Probs. 1 to 6, a linear transformation and a property or properties (simi-
larity preserved) are given. Determine whether the given transformation has
the given property.
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E3 — B3, T((x1, 79, 73)) = (71, 72, 0); invertibility, idempotency
Py — Po, T(az? + bz + ¢) = 2za + b; invertibility, nilpotency

Moy — Moo, T(A) = AT invertibility, idempotency

E? — E? T is rotation by 180°; invertibility

T: E? — E3,T((x1,22,23)) = (z1, 21 + To, T1 + T2 + x3); invertibility,
nilpotency

T: Py — P1,T(a+ bx) = b+ ax; invertibility, idempotency

Consider an equilateral triangle with center C'. Let R be a counterclock-
wise rotation about C' of 120°. Show that three successive applications
of R yield the identity transformation. (Use matrices.)

Let T be a counterclockwise rotation about C of 240°. Show that
ToToT=1.

Consider T': C" — C"™ defined by
T((Z1, 22y e v ,Zn)) = (0, Z1yR2y - ,Zn_1)

(T is called a right shift.) Is T invertible? Is 7" nilpotent? Is T
idempotent?

Consider T': C™ — C™ defined by
T((z1,22, .- ,2n)) = (22,23, ..., Zny 21)
Is T invertible? Is T nilpotent? Is 7" idempotent?

If Ais an involutory matrix (4% = I) and B is similar to A, is B
involutory?

If A is an orthogonal matrix and B is similar to A, is B orthogonal?

If A is a symmetric matrix, P is orthogonal, and B = PTAP, is B
symmetric?

Let us say that a matrix A,, is diagonalizable if it is similar to a
diagonal matrix D. If B is similar to A, is B similar to a diagonal
matrix?
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15. Let L be an invertible linear operator from V to V, and let S =
{v1,va,..., vk} be a linearly independent set in V. Show that the
set {L(vy), L(vs), ..., L(vg)} is linearly independent in the range of L.

4.5 CALCULUS REVISITED

Two of the most important linear transformations in applied mathematics
are differentiation and definite integration, which are studied in calculus.
The familiar rules?

L($@) + g(w)) = = (@) + g()
d

d
T (ef(@) = e f(@)

L%w+wmm=é?mm+fmww

/abcf(cc) da::c/abf(:c) dx

are among the most useful for calculating derivatives and integrals. These
rules are just statements of linearity. In fact, if we denote differentiation by
D, the first two rules above are just

D(f +g)=D(f)+ D(g) and D(cf)=cD(f)

Example 1. Let D be the transformation of differentiation. Show that
D: P3 — Py is not invertible. Give P5 the standard basis S = {1, z, 22, 2*}.
Find the matrix of D with respect to S. Show that D is nilpotent.

Solution To show that D is not invertible, we show that dim(ker D) # 0.
Now ker D is the set of polynomials f for which D(f) = 0 (the zero function).
That is, the kernel is the set of all polynomials which have derivative zero.

From calculus we know that this is the set of constant functions. Thus
ker = D = span 1, and n(D) = 1. Therefore D is not invertible. To find the

2Which, of course, come from theorems in which f and g must satisfy certain conditions.
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matrix, we calculate

D(z*) = 32 = 02 + 32> + 0z + 0
D(z?) =22 = 02 + 02° + 22+ 0
D(z) =1=02° 4 02>+ 0z + 1
D(1) =0 =02 + 02> + 02 + 0
to find
0000
3000
M=10200
0010

Notice that M is not invertible, as we would expect since D is not invertible.
Now since M* = 0, matrix M is nilpotent and thus D is nilpotent of order
4. This is just a linear algebra way of saying that if we differentiate a cubic
4 times or more, we obtain the zero function.

Some calculus students would object to the statement “D is not invert-
ible” because “Everyone knows integration and differentiation are just oppo-
site operations.” We must be careful since the process of antidifferentiation
involves the addition of an arbitrary constant. If we let A denote antid-
ifferentiation, then, for example, A(2x) = x3 + ¢, where ¢ is an arbitrary
constant. If A were to be an inverse to D, we would have A(D(2?)) = z%
however, A(D(z?)) = A(2z) = 2? + ¢, which is equal to z? only if ¢ = 0. So
in general Ao D # I: therefore, A and D are not inverses. The next example
shows, however, that for some vector spaces antidifferentiation is the inverse
of differentiation.

Example 2. Let V be the subspace of P3 defined by V' = { f(z) in P3| f(0) =
0}. Show that dim V' = 3. Show that the range of D with domain restricted
to V' is Py. Define Ay: Py — V as antidifferentiation with arbitrary constant
zero. Show that (Ago D)(f) = f = I(f) for any f in Ps.

Solution A natural basis for V is S = {z,2? 2*} since any cubic p(z) =
az® + bxr? + cx + d has the property p(0) = 0 if and only if d = 0. Therefore
dim V' = 3. Now we calculate the range of D. The range of D is spanned by
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the images under D of the basis vectors for V'; we have

D(z) =1
D(x?) =2z
D(x*) = 32°

so that range D = span {1, 2z, 3x?}. The range of D is all linear combinations
of 1,2z, and 322 which is P,. To show that Ay o D = I, we calculate the
matrices for Ay and D, using the natural bases for V' and P,. We find

D(z) = 1+ 0z + 02

D(z%) = 0 + 2z + 02°

D(z*) = 0+ 0x + 327

and
Ap(1) =1z + 0z2 + 023
Ap(z) = 0z + %xQ + 023
Ao(CCQ) = O.T + 01‘2 + %.’L‘B
Therefore
1 00 1 00
Mp=|(0 2 0] My=|(0 350 Mp,Mp =1
00 3 00 3

Also we see that MpMa, = I, so that D o A = I. In this example we have
forced the arbitrary constant of antidifferentiation to be zero.

Example 2 shows that general principle that to “invert” differentiation,
we need some conditions on the domain of D. In Example 2 the condition
was f(0) = 0. In general, such conditions can be called initial conditions;
they arise in problems in the area of mathematics known as differential
equations. In some textbooks the solving of a differential equation is re-
ferred to as integrating the equation. This terminology comes up because
of the inverse relation we have just seen.

Example 3. Show that the transformation A defined on C[0, 1] by

(A(f)(x) = /1‘ f(t) dt for all z in [0, 1]

is linear.
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Solution Let f and g be functions in C[0, 1]. We have

<Aq+y»uwz/ﬁﬂw+g@Jw
_ [ dt+/mg(t) dt

Zo Zo

= (A(N))(z) + (Al9))(z)

and

M@ﬁm»zfﬁﬂww
:c/mf(t)dt
— (AU (@)

and A is linear. Notice that (A(f))(zo) = 0 for all f.

The fundamental theorem of calculus may be stated in this form:

If f'(z) is continuous on [0,1], then for a fixed z, € [0, 1] and any
x € [0,1],

| £ dt=1@) - fao
zo
Using our notation of D and A, we see that the last equation is

AD() (@) = f(x) = f(zo)

Therefore A is the inverse of D if and only if f(zp) = 0. Again we see an
extra condition to guarantee invertibility of differentiation.

To illustrate this last point, we consider a simple differential equation:
Find a function y(z), in C'(R), which satisfies

Y(z)=y(x) z€R

Now we know that any function of the form y(x) = Ce” satisfies this
equation. Since C' is arbitrary, we have not uniquely solved the prob-
lem. However, if we require further a condition such as y(0) = 3, we find
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y(z) = 3e® as the only® solution of the problem. Unique solvability of a dif-
ferential equation and invertibility of the differentiation operator are closely
connected.

Linear transformations arise in several-variable calculus also. Recall the
gradient: Let f: R® — R with w = f(z,y,2). We have

(o )o2) = (G2 02, L))

and the properties

grad (f +g) =grad f+grad g
grad (cf) = c(grad f)

are not hard to see. Therefore the gradient operation is a linear transfor-
mation from the space of all real-valued functions of three variables with
continuous derivatives to the vector space of ordered triples of continuous
functions of three variables.

The Jacobian is another linear operator which is studied in several-
variable calculus. It is generated by a matrix. If f is a function defined
by

f(z,y) = (9(z,y), h(z,y))

then the Jacobian of f is the matrix of functions

dg(z,y) 9g(z,y)

_ Oz oy
T@9) =\ ona,y) on(z,y)
ox Jy

At each point (zo, o), J (20, yo) is a fixed 2 x 2 matrix. If J(zo,yo) is an
invertible matrix, then f is invertible in some neighborhood of (zg, yo). In this
way the local invertibility of a nonlinear function fis studied by determining
the invertibility of an associated linear transformation (generated by the
Jacobian).

Example 4. Consider the nonlinear transformation f: E? — E? defined
by f(z,y) = (zcosy,zsiny). Find the Jacobian of f. Where is f locally
invertible?

3This is proved in differential equations courses.
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Solution

d(xcosy) O(zcosy)

_ oz Ay
J(@.9) = | de(sing) O(zsiny)
ox dy

__[cosy wsiny
- \siny xcosy

This matrix is invertible if and only if

det J(z,y) #0

That is, z(cos?y +sin®y) = x # 0. Therefore we say f is locally invertible
in a neighborhood of any point (zo,yo) with xy # 0.

These examples illustrate the fact that the operations of differentiation
and integration are the source of many linear transformations in applied
mathematics.

PROBLEMS 4.5

1.

Let V be the set of all functions f(z) for which lim, ., f(z) exists. Show
that V', with the usual definitions of addition and scalar multiplication
for functions, is a vector space. How does the vector space structure
depend on the linearity of the transformation L,: V — R defined by

L,(f) =limy_q f(x)?

Let f be a fixed function in C[0,7]. Define L;: C[0,7] — R by
Ly(g) = [, f(x)g(x) dz. Show that Ly is a linear operator.

Consider the linear operator in Prob. 2. The kernel of L is the set
of all functions g orthogonal to f [where the dot product is (f,g) =
fy f(z)g(z) dz]. Show that if f(x) = sinz, then g(z) = sinnz,n # 1,n
a positive integer, is in ker Ly.

Let f(z,y) = (2%, y*) be a nonlinear operator mapping E? into E?. Use
the Jacobian to determine the local invertibility of f.

Show that D?*: P; — Ps defined by D?*(p(z)) = p”(z) is a linear
transformation. Find the standard matrix of D?. Show that this matrix
is the square of the matrix for D found in Example 1.
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6. Let V be the set of all functions f: R — R with Maclaurin series

convergent to the function for all z. Let

f(x):a0+a1x+a2x2+...+anxn+”.
g(x) = by + b1 + bez® + - + b2 + - -

and define

(f +9)(x) = (ag + bo) + (a1 + b))z + (ag + ba)z* + - - - + (an + bp)2" + - - -
(cf)(x) = cag + cayx + caga® + -+ + capa™ + - -

Show that V' with these operations is a vector space (recall theorems
about convergent power series).

Consider the vector space V from Prob. 6. From calculus we know that
if f eV, and f is differentiable on R then

f’(l‘) = aq + 2asx + 3&31‘2 4o+ TLCLnLL‘n_l ..
Therefor, D: V — V. What would be an inverse operator to D?

Regarding Prob. 7, show how we might consider the “infinite matrix”

01 0 0 ....oovviia.l)
00 2 0 ... ...
000 3 ... ...
000 0 ..o, ..
M = :
n 0
0 0

to be the matrix of D. [Hint: What would be a good choice for a
“basis” of V7]

Recall that for f: E3 — E3 the curl of f can be defined, when f(z,y, z) =
(filz,y, 2), f2(2,y, 2), f3(2,9,2)), as

i j k
14 7 8 a a
curl f = “det ar 9y 0z

ho o fs
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Show that curl is a linear transformation from the space of ordered
triples of continuously differentiable functions of three variables to the
space of ordered triples of continuous functions of three variables.

10. For a function f: E® — E? given by

f(l‘, Y, Z) = (f1(37; Y, Z): fg(l', Y, Z>7 fg(l', Y, Z))
the divergence of f is defined by

divf:%—i-%ﬂL%

Show that div is a linear transformation from the space of ordered
triples of continuously differentiable functions of three variables to the
space of real-valued continuous functions of three variables.

11. Let V be the space of all real-valued functions f: [0,1] — R, along
with the standard operations of addition and scalar multiplication.

(a) Show that T: V — V defined by
T(f)(x) =zf(x) for all z in [0, 1]

is linear.

(b) Show that g defined by
1 =0
g9(z) = 0 z+#0
is in ker 7'
(c) Is T invertible?
12. Let V = C|0, 1], and define T" as in Prob. 11a. Is T" invertible with this

domain? (Check the kernel.)

SUMMARY

Linear transformations, central to applied mathematics, were defined and
then analyzed by considering the kernel and range of the transformation
as well as the matrix representing the transformation. To find the



326 CHAPTER 4. LINEAR TRANSFORMATIONS

matrix representing a transformation is the third basic problem of linear
algebra.

Linear transformations from a vector space to itself can be classi-
fied in a definite way because certain properties of matrices are invariant
under similarity (invertibility, nilpotency, and idempotency are three) and
all representing matrices of a transformation from (V,S) to (V,S)
are similar. The similarity transform P in these cases is simply a transition
matrix, as defined in Chap. 3.

Having the ideas of matrix algebra, linear transformations, and vector
spaces in our repertoire, we are ready to tackle two extremely important
problems of linear algebra: the eigenvalue-eigenvector problem and the di-
agonalization problem. In Chap. 5, determinants, inverses, systems of homo-
geneous equations, vector spaces, bases, dimension, linear dependence, linear
independence, similarity, and orthogonality are all used to solve these prob-
lems. Thus the results from the first four chapters will at last come together
to solve important theoretical and practical problems.

ADDITIONAL PROBLEMS

1. Define T: M, — My, by T(A) = A — AT. Show that T is linear.
Describe the kernel of T

2. Define L: My, — My, by L(A) = A+ AT. Show that L is linear.
Describe the kernel of L.

3. Compare the dimension of the vector space of n x n symmetric matrices
and the dimension of the vector space of nxn upper triangular matrices.

4. Let A be an n x n invertible matrix. Define T: M,,, — M,, by
T(B) = A7'BA. Is T linear? Is T one-to-one?

5. Let P # 0 be a matrix with P? = P, and define T: M,,, — M, by
T(A) = PA. Show that T is linear. Is T' one-to-one?

6. Let ¢ be in C and A be in C,,. Define T: C,; — C, by T(X) =
AX — ¢l X. Show that T is linear.

7. Let A be a square matrix. Consider the matrix B = [ + A. Multiply
B[l — A+ A? — A3 + -+ + (—=1)"A"] for different values of n. If A is
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10.

11.

12.

nilpotent of exponent k, show how the sum in the brackets can be used
to compute (I + A)™'.

Let A be a square matrix such that A” tends to the zero matrix as n
increases without bound. How can you “construct” (I + A)~! by using
a sum such as in Prob. 77

Describe the linear transformation L o T, where L and 71" come from
Probs. 1 and 2. Is Lo T =T o L?

Define N: M,,, — My, by N(A) = AT Using L and T from Probs. 1
and 2, calculate To N and Lo N. Compare T'o N and N oT. Compare
LoN and N o L.

Linear transformations can be indexed by a variable. For example, if a
particle is rotating about the origin of the plane with constant angular
velocity w, the position of the particle is defined by

(20) = (et ety (=)
()

is the initial position vector. Notice that the 2 x 2 matrix A(¢) in the

equation is a matrix function. Show that for all ¢, A(t) is invertible.
Show that for all ¢, A(t) is orthogonal.

where

The matrix

by by by bn

1—d, 0 0 0

0 1-dy 0 0

A=1 o 0 1—ds 0
0 0 0 - 1-d,, 0

is used in difference equations for determining age distributions in pop-
ulations; that is, determining the numbers of individuals in different age
brackets. The matrix represents a linear transformation from the state
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13.

14.

15.
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of age distributions at one observation time to the next. The by are
birth rates, and the dj are death rates for the kth age bracket. Calcu-
late det A for various values of n. Can you generate a formula for det A
for arbitrary n?

In mechanics, when a body is subjected to forces, some change in rel-
ative positions of particles in the body may result. For example, when
a rod is bent, the relative positions of points on the curved surface
change. This change in relative position is known as strain. The term
homogeneous strain refers to strain in which the new coordinates of
a material point, given by Y in M3, are related to the old coordinates,
given by X in M3y, by Y = AX, where A is a 3 x 3 real matrix. Show
that for homogeneous strain straight lines remain straight.

Show that in the case of homogeneous strain, parallel straight lines
remain parallel.

Newton’s method for solving f(z) = 0 can be extended to the problem
of solving

flz,y) =0  g(z,y)=0
Recall that the iterative step for Newton’s method is
f(@n)

ITnt1 = Tp — f/(lf )
n

For the case of the two equations involving f(z,y) and g(x,y), we have

Of (Tn,yn)  Of (T, Yn)

Tn+1 Tn O ay f(xnv yn)
- B 89(%1: yn) ag($m yn>
Yn+1 Yn O By g($n7 yn)
Apply this to
2’ +y*—2=0
rT—y=

and start with
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Complete three steps of the iteration. Actual solutions are

(1) = ()
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