FLOWINPIPES

Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and
cold water that we use in our homes is pumped through pipes. Water in a city is distributed
by extensive piping networks. Qil and natural gas are transported hundreds of miles by large
pipelines. Blood is carried throughout our bodies by arteries and veins. The

cooling water in an engine is transported by hoses to the pipes in the radiator where it is
cooled as it flows. Thermal energy in a hydronic space heating system is transferred to the
circulating water in the boiler, and then it is transported to the desired locations through
pipes. Fluid flow is classified as external and internal, depending on whether the fluid is forced
to flow over a surface or in a conduit. Internal and external flows exhibit very different
characteristics. In this chapter we consider internal flow where the conduit is completely filled
with the fluid, and flow is driven primarily by a pressure difference. This should not be
confused with open-channel flow where the conduit is partially filled by the fluid and thus the
flow is partially bounded by solid surfaces, as in an irrigation ditch, and

flow is driven by gravity alone.

Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications
and fluid distribution networks. The fluid in such applications is usually forced to flow by a fan
or pump through a flow section. We pay particular attention to friction, which is directly
related to the pressure drop and head loss during flow through pipes and ducts. The pressure
drop is then used to determine the pumping power requirement. A typical piping system
involves pipes of different diameters connected to each other by various fittings or elbows to
route the fluid, valves to control the flow rate, and pumps to pressurize the fluid. The terms
pipe, duct, and conduit are usually used interchangeably for

flow sections. In general, flow sections of circular cross section are referred to as pipes
(especially when the fluid is a liquid), and flow sections of noncircular cross section as ducts
(especially when the fluid is a gas). Small diameter pipes are usually referred to as tubes.
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LAMINAR AND TURBULENT FLOWS

If you have been around smokers, you probably noticed that the cigarette smoke rises in a
smooth plume for the first few centimeters and then starts fluctuating randomly in all
directions as it continues its rise. Other plumes behave similarly . Likewise, a careful
inspection of flow in a pipe reveals that the fluid flow is streamlined at low velocities but turns
chaotic as the velocity is increased above a critical value, as shown below The



flow regime in the first case is said to be laminar, characterized by smooth streamlines and
highly ordered motion, and turbulent in the second case, where it is characterized by velocity
fluctuations and highly disordered motion. The transition from laminar to turbulent flow does
not occur suddenly; rather, it occurs over some region in which the flow fluctuates between
laminar and turbulent flows before it becomes fully turbulent. Most flows encountered in
practice are turbulent. Laminar flow is encountered when highly viscous fluids such as oils
flow in small pipes or narrow passages.
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Laminar and turbulent flow regimes of candle smoke
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The behavior of colored fluid injected into the flow in laminar and turbulent flows in a pipe

Reynolds Number

The transition from laminar to turbulent flow depends on the geometry, surface roughness,
flow velocity, surface temperature, and type of fluid, among other things. After exhaustive
experiments in the 1880s, Osborne Reynolds discovered that the flow regime depends mainly
on the ratio of inertial forces to viscous forces in the fluid. This ratio is called the Reynolds
number and is expressed for internal flow in a circular pipe as:

Inertial forces VD pViyD
RL:" —— - - = ——
Viscous forces v M




where Vavg = average flow velocity (m/s), D = characteristic length of the geometry
(diameter in this case, in m), and v = plp =kinematic viscosity of the fluid (m?/s). Note that

the Reynolds number is a dimensionless quantity.

At large Reynolds numbers. the inertial forces. which are proportional to
the fluid density and the square of the fluid velocity, are large relative to the
viscous forces, and thus the viscous forces cannot prevent the random and
rapid fluctuations of the fluid. At small or moderate Reynolds numbers,
however, the viscous forces are large enough to suppress these fluctuations
and to keep the fluid “in line.” Thus the flow is turbulent in the first case
and laminar in the second.

The Reynolds number at which the flow becomes turbulent is called the
critical Reynolds number, Re_. The value of the critical Reynolds number
is different for different geometries and flow conditions. For internal flow in
a circular pipe, the generally accepted value of the critical Reynolds number
is Re_, = 2300.

For flow through noncircular pipes, the Reynolds number is based on the
hydraulic diameter D, defined as (Fig. 8—6)

4A,

Hvdraulic diameter: D, =—— (8—4)
P

where A_ is the cross-sectional area of the pipe and p is its wetted perimeter.

The hydraulic diameter is defined such that it reduces to ordinary diameter
D for circular pipes,

A _ADU)

Circul, ipes: D, =
ircular pipes h - D

It certainly is desirable to have precise values of Reynolds numbers for
laminar, transitional, and turbulent flows, but this is not the case in practice.
It turns out that the transition from laminar to turbulent flow also depends
on the degree of disturbance of the flow by surface roughness, pipe vibra-
tions, and fluctuations in the flow. Under most practical conditions, the flow
in a circular pipe is laminar for Re = 2300, turbulent for Re = 4000, and
transitional in between. That is,

Re = 2300 laminar flow
2300 = Re = 4000 transitional flow
Re = 4000 turbulent flow
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The hydraulic diameter £2», — 4A J/p is

defined such that it reduces to ordinary
diameter for circular tuabes.



Pressure Drop and Head Loss

A quantity of interest in the analysis of pipe flow is the pressure drop AP
since it is directly related to the power requirements of the fan or pump to
maintain flow. We note that dP/dx = constant, and integrating from x = x,
where the pressure is P, to x = x; + L where the pressure is P, gives

dP _ Py — P,

8-19
dx L ¢ )

Substituting Eq. 8-19 into the V_,
drop can be expressed as

« expression in Eq. 8-16, the pressure
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Laminar flow: AP=P, — P, = (8-20)
The symbol A is typically used to indicate the difference between the final
and initial values, like Ay = y, — »,. But in fluid flow, AP is used to desig-
nate pressure drop. and thus it is P, — P,. A pressure drop due to viscous
effects represents an irreversible pressure loss, and it is called pressure loss
AP; to emphasize that it is a loss (just like the head loss h;. which is pro-
portional to it).

Note from Eq. 8-20 that the pressure drop is proportional to the viscosity
o of the fluid, and AP would be zero if there were no friction. Therefore,
the drop of pressure from P, to P, in this case is due entirely to viscous
effects, and Eq. 8—20 represents the pressure loss AP, when a fluid of vis-
cosity o flows through a pipe of constant diameter DD and length L at aver-
age velocity V..

In practice, it is found convenient to express the pressure loss for all types
of fully developed internal flows (laminar or turbulent flows, circular or
noncircular pipes, smooth or rough surfaces, horizontal or inclined pipes) as

(Fig. 8—13)

Pressure loss: AP, = f— (8-21)

where pVi.EIZ is the dyvnamic pressure and f is the Darcy friction factor,
871,
pb’i.g

= (8-22)
It is also called the Darcy—Weisbach friction factor, named after the
Frenchman Henry Darcy (1803—1858) and the German Julius Weisbach
(1806—1871), the two engineers who provided the greatest contribution in
its development. It should not be confused with the friction coefficient C;
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[also called the Fanning friction factor, named after the American engineer
John Fanning (1837-1911)], which is defined as Cf = ZT“.I(pVg\,g} = fl4.

Setting Egs. 8-20 and 8-21 equal to each other and solving for f gives the
friction factor for fully developed laminar flow in a circular pipe,

64 64
pDVy, Re

Circular pipe, laminar. f= (8-23)
This equation shows that in laminar flow, the friction factor is a function of
the Reynolds number only and is independent of the roughness of the pipe
surface.

In the analysis of piping systems, pressure losses are commonly expressed
in terms of the equivalent fluid column height, called the head loss h;. Not-
ing from fluid statics that AP = pgh and thus a pressure difference of AP
corresponds to a fluid height of h = AP/pg, the pipe head loss is obtained
by dividing AP, by pg to give

AP L Vi
Head loss: h, = —L_ e

- (8-24)
ps "D 2g
The head loss h; represents the additional height that the fluid needs to be
raised by a pump in order to overcome the frictional losses in the pipe. The
head loss is caused by viscosity, and it is directly related to the wall shear
stress. Equations 8-21 and 8-24 are valid for both laminar and turbulent
flows in both circular and noncircular pipes, but Eq. 8-23 is valid only for
fully developed laminar flow in circular pipes.

Once the pressure loss (or head loss) is known, the required pumping
power to overcome the pressure loss is determined from

Woump, . = VAP, = Upgh;, = mgh; (8-25)

where V/ is the volume flow rate and mis the mass flow rate.
The average velocity for laminar flow in a horizontal pipe is, from Eq. 8-20,
(P, = Py)R* (P, — P)D* AP D’
8uL 32ul 32ul

Horizontal pipe: Vavg = (8-26)

Then the volume flow rate for laminar flow through a horizontal pipe of

diameter D and length L becomes
o (P, — P)R* (P, — Py)ywD' AP =wD}
V= VA, =——>— 7R’ = =

8l 128ul.  128ul

(8-27)

This equation is known as Poiseuille’s law, and this flow is called Hagen—
Poiseuille flow in honor of the works of G. Hagen (1797-1884) and J.
Poiseuille (1799-1869) on the subject. Note from Eq. 827 that for a speci-
fied flow rate, the pressure drop and thus the required pumping power is pro-
portional to the length of the pipe and the viscosity of the fluid, but it is
inversely proportional to the fourth power of the radius (or diameter) of the
pipe. Therefore, the pumping power requirement for a piping system can be
reduced by a factor of 16 by doubling the pipe diameter (Fig. 8-14). Of
course the benefits of the reduction in the energy costs must be weighed
against the increased cost of construction due to using a larger-diameter pipe.

The pressure drop AP equals the pressure loss AP, in the case of a hor-
izontal pipe, but this is not the case for inclined pipes or pipes with vari-
able cross-sectional area. This can be demonstrated by writing the energy



equation for steady, incompressible one-dimensional flow in terms of heads
as (see Chap. 3)

P, vi Py V3
E + o, 2_.5’ + 21+ hpumpow = E + 322—8 + 22 + Arbine, e + fir (8-28)
where h, ..., is the useful pump head delivered to the fluid, A, . is the

turbine head extracted from the fluid, &, is the irreversible head loss
between sections 1 and 2, V|, and V, are the average velocities at sections
1 and 2, respectively, and «, and «, are the kinetic energy correction factors
at sections 1 and 2 (it can be shown that « = 2 for fully developed laminar
flow and about 1.05 for fully developed turbulent flow). Equation 8—28 can
be rearranged as

PJ - P2 = P(GEV% - l‘:'lrl‘i"{,fl)_)"i2 + PS[(?Q - ZJ] + Ji:‘1l11rl'1i11|2,|-_’ - kpurnp,u + hf_.] (8-29)

Therefore, the pressure drop AP = P, — P, and pressure loss AP; = pgh;
for a given flow section are equivalent if (1) the flow section is horizontal
so that there are no hydrostatic or gravity effects (z;, = z,), (2) the flow sec-
tion does not involve any work devices such as a pump or a turbine since
they change the fluid pressure (..., . = fubine, . = 0). (3) the cross-sectional
area of the flow section is constant and thus the average flow welocity is
constant (V;, = V,), and (4) the velocity profiles at sections 1 and 2 are the

same shape (o, = ;).
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FIGURE 8-14

The pumping power requirement for
a laminar flow piping system can be
reduced by a factor of 16 by doubling
the pipe diameter.



: EXAMPLE 8-1 Flow Rates in Horizontal and Inclined Pipes

Oil at 20°C (p = 888 kg/m?® and u = 0.800 kg/m - s) is flowing steadily
through a 5-cm-diameter 40-m-long pipe (Fig. 8-17). The pressure at the
pipe inlet and outlet are measured to be 745 and 97 kPa, respectively.
Determine the flow rate of oil through the pipe assuming the pipe is (a) hor-
izontal, (b) inclined 15° upward, (c) inclined 15° downward. Also verify that
the flow through the pipe is laminar.
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SOLUTION The pressure readings at the inlet and outlet of a pipe are given.
The flow rates are to be determined for three different orientations, and the
flow is to be shown to be laminar.

Assumptions 1 The flow is steady and incompressible. 2 The entrance
effects are negligible, and thus the flow is fully developed. 3 The pipe
involves no components such as bends, valves, and connectors. 4 The piping
section involves no work devices such as a pump or a turbine.

Properties The density and dynamic viscosity of oil are given to be p
= 888 kg/m? and u = 0.800 kg/m - s, respectively.

Analysis The pressure drop across the pipe and the pipe cross-sectional
area are

AP = P, — P, = 745 — 97 = 648 kPa
A, = wD%4 = 7(0.05 m)¥4 = 0.001963 m”
(@) The flow rate for all three cases can be determined from Eqg. 8-34,

U= (AP — pglL sin )7 D*

128l

where 8 is the angle the pipe makes with the horizontal. For the horizontal
case, & = 0 and thus sin &8 = 0. Therefore,

AP wD' (648 kPa)w (0.05 m)* ( 1000 mez)(l kg - mfsz)

horiz — 128ul - 128(0.800 kg/m - s)(40 m) 1IN

= 0.00311 m?>/s

rurer s o am

1 kPa

(b) For uphill flow with an inclination of 15° we have # = +15°, and
_ (AP — pgLsin 0)wD*
uphill 128,[.&[.
[648,000 Pa — (888 kg/m*)(9.81 m/s?)(40 m)sin 15°]ar(0.05 m)®* (1 kg - mfsl)
128(0.800 kg/m - s)(40 m)

v

1Pa-m’
= 0.00267 m%/s
(c) For downhill flow with an inclination of 15% we have 8 = —15°, and
Voo = (AP — pgL sin §)ymD*
128ul
_ [648,000 Pa — (888 kg/m’)(9.81 m/s)(40 m)sin(—15%)](0.05 m)* ( 1kg - m.-'sz)
128(0.800 kg/m - s)(40 m)

1Pa-m’

= 0.00354 m%/s



The flow rate is the highest for the downhill flow case, as expected. The
average fluid velocity and the Reynolds number in this case are

v 0.00354 m’/
Vg = — = ———— 2 — 1.80 m/s
A, 0.001963 m

_ PVaeD (888 kg/m™)(1.80 m/s)(0.05 m)

R
€ o 0.800 kg/m - s

100

which is much less than 2300. Therefore, the flow is laminar for all three
cases and the analysis is valid.

Discussion MNote that the flow is driven by the combined effect of pressure
difference and gravity. As can be seen from the flow rates we calculated,
gravity opposes uphill flow, but enhances downhill flow. Gravity has no effect
on the flow rate in the horizontal case. Downhill flow can occur even in the
absence of an applied pressure difference. For the case of P, = £ = 97 kPa
(i.e., no applied pressure difference), the pressure throughout the entire pipe
would remain constant at 97 Pa, and the fluid would flow through the pipe at
a rate of 0.00043 m3/s under the influence of gravity. The flow rate increases
as the tilt angle of the pipe from the horizontal is increased in the negative
direction and would reach its maximum value when the pipe is vertical.

EXAMPLE 8-2  Pressure Drop and Head Loss in a Pipe

Water at 40°F (p = 62.42 Ibm/ft® and & = 1.038 x 103 Ibm/ft - s) is
flowing through a 0.12-in- (= 0.010 ft) diameter 30-ft-long horizontal pipe
steadily at an average velocity of 3.0 ft/s (Fig. 8-18). Determine (a) the head
loss, (b) the pressure drop, and (c) the pumping power requirement to over-
come this pressure drop.

SOLUTION The average flow velocity in a pipe is given. The head loss, the
pressure drop, and the pumping power are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The entrance
effects are negligible, and thus the flow is fully developed. 3 The pipe
involves no components such as bends, valves, and connectors.

Propeities The density and dynamic viscosity of water are given to be p =
62.42 Ibm/ft> and w = 1.038 x 102 Ibm/ft - s, respectively.

Analysis (a) First we need to determine the flow regime. The Reynolds num-
ber is

_ PVaeD  (62.42 1bnv/fE)(3 fi/s)(0.01 fit)
e 1.038 % 107* Ibm/ft - s

Re = 1803

which is less than 2300. Therefore, the flow is laminar. Then the friction
factor and the head loss become

64 64
f=—=——=0.0355
Re 1803
h, = Evag—gosss 08 Gy __ 14.9 ft
FIDo2g 0 T 001 ft 2(32.2 fus?) :

(b) Noting that the pipe is horizontal and its diameter is constant, the pres-
sure drop in the pipe is due entirely to the frictional losses and is equivalent
to the pressure loss,



L Pvgvg 30 ft (62.42 Ibm/ft*)(3 ft/s)* ( 1 Ibf )
3

AP = AP, = f— =0.
L~ p 2 0.01 ft 2 2.2 Ibm - ft/s?

= 929 Ibf/ft* = 6.45 psi
(c) The volume flow rate and the pumping power reguirements are

V = VA, = Vo (mD?4) = (3 fis)[m(0.01 ft)’/4] = 0.000236 ft'/s

. R _ ;
Wiump = V AP = (0.000236 ft'/5)(929 1bf/ft’) (0.73?_ Ibf - TUs

Therefore, power input in the amount of 0.30 W is needed to overcome the
frictional losses in the flow due to viscosity.

Discussion The pressure rise provided by a pump is often listed by a pump
manufacturer in units of head (Chap. 14). Thus, the pump in this flow needs to
provide 14.9 ft of water head in order to overcome the irreversible head loss.
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