COURSE TITLE:
Introduction to Non-Linear Systems

COURSE CODE:
EEE 566

LECTURE 3

Engr. Dr. Femi Onibonoje



Modelling of Simple
Nonlinear Systems




Some Background Information

- In Control Engineering, there are three major
tasks that are performed in the process of trying

to improve upon the operations of systems:

= Modelling
= Analysis

= Design of Controllers

» Taking the first letters of the tasks above, I like
to say that control involves the MAD
combination!



Crude Definition of Modelling

» Modelling 1s the investigation of the behaviour
of a system as indicated by how certain variables
of interest (outputs) change with time under the
influence of changes in manipulated variables
(1nputs) and external disturbances.

» The processes of modelling and analysis lead to
the subsequent design of appropriate corrective
measures (controllers) for the system.



Importance of Modelling

» Modelling 1s important for many reasons. Some
of them are:

= Operator Training: People can learn the proper ways to
respond to different system conditions before having to
experience them on the real system.

= Design of Equipment: The information provided by a model
can help in design of equipment for desired rates of production or
performance.

= Design of Safety Systems: Models can provide information for
taking safety steps in the event of failure of some vital
components.

= Control of Systems and Processes:
<  Control system design is based on models.
< Before implementation, models are tested by simulation.



Approaches to Modelling

- Two main approaches:
= Experimental Approach:

% Physical equipment of the system available to the Control Engineer.
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¢ Values of various inputs (manipulated variables and disturbances)
are changed;
¢ Through use of appropriate measuring devices, outputs of the

system are observed and recorded.
¢ This procedure is tedious and time-consuming;
However], this procedure is applicable for systems where
mathematical modelling may not be possible.
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= Theoretical Approach

*

%+ This is usually a set of mathematical equations (differential or
algebraic) whose solution yields the dynamic or static
behaviour of the system under consideration

s+ All tools we have been introduced to in earlier control courses
are in aid of mathematical modelling.



Examples of Physical and Material-Balance

Laws for Modelling
- Physical Laws:

= Newtonian Motion Laws (First, Second, and Third)
Quantum Mechanical Laws

Relativistic Mechanical Laws

Hooke’s Law (Spring Systems)

Kirchhoff’s, Ohm’s Laws (Electrical Systems)
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- Material-Balance Laws
= Bernoulli and Torricelli’s Law (Chemical Process
Systems)
= Mass and Energy-Balance Equations
= Transport Rate Equations (Transport Phenomena)
= Kinetic Rate Equations (Chemical Kinetics)

= Reactions and Phase-Equilibria Equations
(Thermodynamics)



Linear Constitutive Relations for Common Systems

Constitutive Relation for

Energy Dissipating
System Energy-Storage Elements Elements
T-Type (through) D-Type (dissipative)
Type A-Type (across) Element Element Element
Translatory-mechanical Mass Spring Viscous damper
v = velocity do df f=h
f=force T f i ko b=damping constant
(Newton's second law) (Hooke's law)
M= Mmass k= stiffness
Electrical Capacitor Inductor Resistor
v=voltage do . di Ri=v
i=current CE_ ! Lﬁ_ . R =resistance
C=capacitance L=inductance
Thermal Thermal capacitor None Thermal resistor
T=temperature difference c aT _ 0 RQ=T
(J=heat transfer rate 't R,=thermal resistance
C,=thermal capacitance
Fluid Fluid capacitor Fluid inertor Fluid resistor
P=pressure difference c aP I dagQ - It RiQ="F
Q=volume flow rate T T R;= fluid resistance
C¢= fluid capacitance Iy= inertance




Example 1: Modeling
of a Mechanical
System



A Mechanical System

/ / / System: Mass-Spring-Damper System
with a Hardening Spring
Preliminaries
A
fyp

% This system is commonly used to model many mechanical

\ systems where the application of force is being used to effect
fm-s . changes i.n displacement and associated v;‘nriubl.es. |

% Here, a displacement takes place when a force 1s applied on a
mass suspended by a spring

% The applied force f(t) and the gravitational force mg act to

pull the mass down, while forces £, and f ;s due respectively
f(t) T to the spring and viscous friction act to oppose these forces.
— | | % Unlike springs with linear force-displacement relationships, this
mg f net = M particular spring has a nonlinear force-displacement
\ relationship

Y fspr = k)'(1+a2y2)




A Mechanical System (Cont’d)

« The use of Newton’s Second Law of Motion, Viscous Friction
Relationship and Spring Laws give rise to the relevant force-
balance differential equation

wyoe L4 . 2 2
| my = f(t) + mg — By — ky(1+ a’y®)

« This can be rearranged to give

. . 2 2 _
~ my+By+ky(1+a®y”)=f(t) + mg
< Defining state variables
Xy =Y, X% =Y
gives the following state equations

X1 = X2
. k kK .. 9 B 08
Xg=——X1——@°%°" ——%,+—+g
m m m m
 Since f(t) is the force applied on the mass, it is the input and
therefore can be replaced with the symbol u where
< We can then re-write the state equations above as filxy,x2,u) = x;
Xy = f1(x1,%2,u) fa(xy,x2,u) =
Xy = fa(xy, x5, u) k
and the output equation as m
y — g(xl,xz,u) 9'(1'1:1’2,“) = X1




A Mechanical System (Cont’d)

Determination of Equilibrium Points
% For equilibrium, the states must be steady 1.e. the states must be
unchanging with time 1.e.

:1‘51:0.17'2:[1

++ This leads to

:fl:xg:ﬂ
and
k k p u
. 2.3 _
Xo = ——X1 ——QA°X1"" ——X-+—4+qg=10
2 1 1 2 g

% Putting x, = 0 into the expression for x5 yields
k k , , u 0
——X;——a’x;"+—+g=
m ' m LY




A Mechanical System (Cont’d)

*» Because we have a single equation and 2 unknowns, this cannot
be solved as 1t 1s.

We therefore assign a value to the imput for which we desire to
determine steady-state information. We often call this input

value the “nominal input value™ or ““‘nominal manipulated
vartable value™

For a chosen nominal input value U . and for determined
TEOFIL
parameter values k, @, and a, the equation

ke ke, or
pls = rraorri o
——Xx, ——a x4y +——+ g = 0
m~ ' m 1 m

can then be solved to vield three values of x; 1.e. X,,. X,- and
Xis

<+ Then, we can say that the points of equilibrium of the system,

for the nominal input value of U,,,,,,. and parameter values of
ke, m, and a, are located where

X1 =¥y =X1:x2 =y =
X1 ¥y =X12:X2 =¥
X9 =YV =Xq3:X2 =¥

0
0
0




Example 2: Modeling
of PMSMs



An Electromechanical System
System : Permanent-Magnet Synchronous Machines

Introductory Remarks

Synchronous machines are machines that have the rotor speed
and the speed of the rotating stator-generated magnetic field
synchronized, hence the name.

Synchronous machines are well known 1n applications requiring
speed reversions and wide-range power variations.

The stator 1s composed of three identical winding distributed 1n
space such that any two successive windings has a space of
120° between them.

When the stator windings are current-fed by a balanced three-
phase AC supply, a turning field 1s generated along the air gap
between the stator and the rotor.

The turning field generated by the stator does not make the
rotor to rotate.

The rotor therefore needs to be excited separately to begin its
own rotation.




An Electromechanical System (cont’d)

<+ Based on the source of this excitation, and hence the elements
attached to, or associated with the rotor, synchronous machines
exist in two variants 1.e. wound-rotor synchronous machines
(WRSMs) and permanent-magnet synchronous machines
(PMSMs).

Stator winding

Stator winding

Adr ga .
=ap Stator

LIS =Th 1 q =Y
Rotor pole Permanent-magnet

Rotor excitation winding Rator (the magnetic civcuir)




An Electromechanical System (cont’d)

»» In WRSMs, the rotor magnetic field is generated by windings
fixed on the rotor.

«¢* These windings are fed by a dc generator to create a
magnetomotive force (MMF) along the air gap between the
stator and the rotor.

¢ The interaction between the turning field created by the stator
and the magnetomotive force created by the windings on the
rotor generates an electromagnetic torque that gets applied to
the rotor and generates a rotation.




An Electromechanical System (cont’d)

Stator windng

Air gap

Rotor (the magnefic circuit)

Stator

Permanent-magned

o In PMSMs, the rotor magnetic field Is generated by permanent
magnets fixed on the rotor,

o These magnets need no external excitation and generate a
magnetomotive force (MME) along the air gap between the
stator and the rotor.

% Acain, the Interaction between the turning field created by the
stator and the magnetomotive force created by the permanent
magnets generaes an electromagnetic torque that gets applied
1o the rotor and generates a rotation.

s The motlons of the turning stator-generated magnetic field and
the rotor reach steady-state when the rotor speed becomes equal
10 the speed of the turning field generated by the stator.




An Electromechanical System (cont’d)

Stator winding

Aur gap

Rotor {the magnetic circuit)

Stator

Permanent-magn

&
i-‘i-

#
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Mathematical Modelling

Since we are dealing with three-phase systems, the balanced
three-phase positive (or abe) phase sequence yields the
following triplet of equations

x, = Acos(wt+ @)

im
x, = Acos (mf+q:l—?)
2
x.=Acos (mt+q:1+?)

where x could represent, in this case. voltages or currents or
magnetic fluxes.

The three-coordinate frame above is usually stationary or stator-
related.

This frame is difTicult to deal with when control-related
applications arc being considered. This 1s because the voltage
expressions that take the denvatives of the respective {Tuxes in
the system comprise expressions of self and mutual
inductances, and the tri-dimensionality of the equations makes
the equations unduly cumbersome.

Also, there 15 a dependence of the fluxes on both time and rotor
position.




An Electromechanical System (cont’d)

Stator winding

< Because of these issues, a coordinate transformation system
Stator was developed by Park and Concordia to take the stator-related,
position-dependent three-phase [rame (o an equivalent, lower-
size, position-independent rotating direct-axis-quadrature axis
(or d = q) frame,
% This frame has constant inductance terms and all signals are
steady-state sinusoidal along the d- and g- axes.

Alr gap

** Going back to the abc frame, the application of Faraday’s and

Ohm's laws yields the following three-phase stator voltage
P-Cfl.!'l.ﬂlll.‘ll.'l'l.ml?ﬂ-.'l

equations:
Rotor ithe magnefic circui) Vea Rs 0 0 isn d E]sn
. Usp| =|0 Ry 0[] ‘|‘E D
poxis $peanis veel 10 0 RJIi, 0.,
where
v;(i = a,b,c) is the stator voltage for phase i;
ot -als i.;(i = a,b,c)is the stator current for phase i:
0 (i = a,b,c) is the induced flux in the stator windings for
phase i

R, is the stator winding resistance.




An Electromechanical System (cont’d)

b-axis pP-axis

st;\ d-axis
g-axis ] _
—daAXxX1lsS
. L3
e i, ST
%\J—» a-axis
ad-axis

C-aAxXi1s

The Three-Phase abe-Coordinate Frame, The eff Stationary

Two-Phase Coordinate Frame, and the dg Rotating Two-Phase
Coordinate Frame for the PMSM




An Electromechanical System (cont’d)

Stator winding

%+ We can write the above equation in shorthand form as

Alr gap J
[vmhc] - [Rs][imhc] + E[@snhr]

Slator

< In the rotor, a constant flux is created by the permanent magnets
and a set of mutnal fluxes is generated between the magnetic
field of the rotor’s permananet magnets and the rotating
magnetic field generated by the stator.

< These fluxes can be written in the abe-frame as:

P~:rl]1ulltll1-milglh‘l @ — E} EﬂS_ (FH)
a I
o Zm
Rotor {the magnefic circui) lﬂh — Qr cos (p,ﬂ _ ?)
f ZE
b-nxis f-axis E‘JE — E’,-EDS (pﬂ + 3 )

where @ 1s the amplitude of the flux produced by the magnets.
“» We can therefore say that the flux through each of the stator
s windings is the sum of the flux induced by the rotor magnets
aranis and the flux produced by the currents carried by the stator
/’ phases, or

;;E‘;I“ [lﬂ';ﬂbf] = [L”] [isﬂbc] | [@J'ﬂ-bf]




An Electromechanical System (cont’d)

Stator winding

Adr zap i
& Stator

% Thus, the stator voltage equation then becomes

d
[v.mbc] = [Rs] [isnbc] + E[[Lss][is:zbc] + [@?‘ubr]]

d d
[T".mbf] - [Rs][imhr] +E[[Lss] [i.mbr]] +a[[grﬂhr]]
Permanent-magnet & Since d{fdt (.) _ d({dﬁ | dﬂfdt (.) _ dﬂ/{dt - d/da (.} and

dﬁ/dt represents the rotor speed, then the above equation can

Rotor (the magnefic circuit)

F .
=axIs Iﬂ-ﬁ:’ﬁl!’i

be re-wrilten as

Yk

\ d de d
TRENG | ) [vfﬂl.ﬁlf] - [Hs] [i!.'l'!bf.‘] + d_é [[Ls.;'] [iﬂihrﬂ T £§[[Grnhr]]
J-AK i s [vﬁﬂﬂf] = [Rs][imbc] +E “Lss][fsnﬂc]] + ME[[@r'nhﬂ]]




An Electromechanical System (cont’d)

Stator winding

Aar =ap ,
£l staror

Permanent-magnet

Rotor (tive magnesic circuir)

[ 3
h-pxis Iﬂ-ﬁ]i!’i

=axis

a=axis

J=a%i5

PR E

%+ It can be shown that through the use of the Concordia-Park

lransformation
Xa
X
— proanT T
[xq] = P(p) Cs2 lxb
xl’.'
where
cosp —sinp

P =1 .

(p) sinp cosp

with g representing the angular position of the rotating
reference frame, and

-1 0
/E _1f2 vs"'jz

O3z = \IE ) =
— ‘[2 v fH’E

that the stator voltage equations in the dg-frame can be written
H B

[veta) = (Relliaag) + (L] g [[fcaal] + P0@[Lag][icae]

+ p{ﬂﬂ'[@rdq]
where
p is a proportionality constant between the electrical equivalent
of the angular position g and the rotor angular displacement @;
and




An Electromechanical System (cont’d)

Stator winding

Al gap ) ) o - .
S < After appropriate substitutions, the eventual stator voltage

equations in the dg frame can be written as
. dii‘d
Vsqg = Rslsd + Lsd dt 5q sq
dig, E_
5q dt +pm1’gdi’£d+pm\/ /2

—pwl_ i

v, = Ry, + 1

Pt.‘fl.]l.tilll.'lﬂ-l'l'lil.__EI.'I-.'l

Rotor {the magnetic circuit)

With the term pow J 3 / 5 @, being the voltage drop associated

I with the permanent-magnet flux.
%} deaxis % Re-arranging the equations yields
gaXis Sy tp ™y [i], 1
' sd . \
dt L [T’Tsd Rslsd T pm‘[‘sqlsq]
Z-axis ] sd

D o di,, 1
|'|rl|| q _ L ] 3
g} T I v, —Pwlyi, — R, —pm\’ /2 0




An Electromechanical System (cont’d)

Stator winding

Adr gap .
£l sfator

Permanent-magnet

Rotor (the magnefic circui)

F-axis ‘L,ﬁ-i'l"ti"!

Sfeaxis

i ¥ia
I.!.l.l
+ - ' = I-1%is

oo
A=0X15

% If we are doing current control, the two currents £,4 and i,
becomes the outputs i.e.

Y1 = Isq
Y= isq

% The two outputs are also the two states of the system. as seen in
the difterential equation above,

* The two currents {;4 and i, are manipulated by the
corresponding voltages v, and vy, respectively. Therefore, the
inputs are the voltages vg,; and vg,.

% If we use standard state and input notations to replace the
current and voltage symbols respectively, we have

dxl 1
E = L_[i[_RjII + pm[.m:cg + H-l]
5
dx, 1 o
—=—|-pwl.;x; — R.X» ua—m3 :
df qupfdl s.,+..p’2{2'1
N
and the output equations
Y1 =%
Y. =X




An Electromechanical System (cont’d)

Stator winding

AIr 2ap ,
£l stator

% Thus, we can say

, Where
Permanent-magnet
Xy, %o, Uy, 1U,) —R.x; + pwl Xz HU
Retor (the magnetic circui) f 1{: L s [ 17 P 2t 1]
B-nxis "Iﬂ-axiﬁ fE(I[,-IE:ul_nuE:l )

Vol

1 f3_
== ~pwlsgx; — Ry +Uy —pw 7)o 0
.’i'l‘.[ 4
Gq(xy, %0, up,up) = Xy
922y, %0, Uy, u2) = X,




An Electromechanical System (cont’d)

R

#

Determination of Equilibrinm Points

Again, for equilibrium, the states must be steady i.e. the states
must be unchanging with time 1.e.

.1."1 — ﬂ,.I'.g = 0
This leads to
dxy
— x X, L _,'L[ _ 0
di F1lxy, x2, vy, uz)
X ( ) =0
dr Fz(x3,.x2, Uy, Uz ) =

Again, we have 2 equations and 4 unknowns, this cannot be
solved as it is.

We therefore again assign nominal values to the 2 inputs for
which we desire to determine steady-state information as we
did for the two previous cases.

Solving the equations for the nominal input values and for
specilic parameter values will give the values ol the direct- and
quadrature-axes currents at steady state,




Common Methods of
Analysis of Nonlinear
Systems




Analysis Methods for NL Systems

Unlike linear systems, there 1s no general theory applicable to all
nonlinear systems.

Therefore, analysis methods are used only for specific classes of
nonlinearities.

In more advanced studies of nonlinear systems, the use of
complicated mathematical structures such as differential
geometry, functional analysis, nonlinear differential equation
theory, etc. 1s common.

Because of the complexities, however, the use of approximate
methods of analysis, with nonhnear characteristics substituted by
idealized ones, 1s heavily 1n use.




Analysis Methods for NL Systems

* For this level, the common analysis tools for nonlinear
systems are

o Tanearization Methods
Qe Tangential or Time-Domain Linearization
**Harmonic or Frequency-Domain Linearization
*¢*Statistical Linearization
*** Piecewise Linearization
**Dual-Input

***Systems with two sinusoidal inputs

“»*Systems with single sinusoidal, single random nputs

,‘, w .
*ﬂS}'stEms with two random mputs

> Graphical Methods (Phase-Plane Analysis)
> Lyapunov’s Second Method of Stability Analysis




Linearization........../what?

* What exactly 1s “linearization™?
o 'To “linearize” 1s ssmply to represent something “nonlinear” with
something “linear”.
o Obviously, linearization 1s an approximation, since the
linear representation of the nonlinearity cannot be identical
to the nonlinear representation in the large

o Linearization can be in the time domain or in the
frequency domain, for deterministic signals

o Time domain linearization 1s often achieved either by the
concept of “tangential linearization” or the concept of
“method of least-squares approximation”

o Frequency-domain linearization 1s often achieved using

“describing functions” in a process called “harmonic
linearization™.




Linearization........../why?

 The reasons ‘wh}-* we “linearize’” are obvious:

> Most of the “easy” available tools of analysis of systems in
Control Engineering are linear (Bode plots, Nyquist Diagrams,
Nichols Plots, Root Locus, etc.)

o Tt has been shown (iu Harmonic Liueﬂrizati{:sn) that the
9531111lpti{:~115 made to achieve linearization can achm]l‘_r be valid

OI11€5.

° It 1s actually possible to use the results of linearization about
the steady state to get useful stability information about the
actual nonlinear system in the vicinity of the steady state
through a popular method called Lyapunov’s First Test

Method (more later).




Linearization......./drawbacks

» Some of the slmrtcmnjﬂgs of linearization are

> Time-domain linearization i1s 1s not reliable for systems with
varying operating regimes. A particular inear model is suitable
for a specific operating point but loses validity of the
operating point changes.

= Time-domain linearization only applies to analytic
nonlinearities (differentiable for all time) because
differentiation is an important part of the process of arriving
at the linearized models. Therefore, a saturation nonlinearity,
for instance, cannot be linearized 1n the large.

o Harmonic linearization mvolves some -assumpti{:}ns that are
not alwﬂ}*s valid




Linearization......./methods
Time-Domain Linearization

» [inearization in the ttme
domain can be achieved by
two common methods:

*Tangential Linearization

*Method ot Ieast Squares



Tangential Linearization

» Tﬂﬂg&ﬂﬁﬂl Linearization
makes use of the concept

of tangents

* A tangent 1S Q stmight line
that touches a line at u::mlj,-* a

Siugle p oimnt.

* For multi--dimensional
systems, a tangent becomes

a h}-*perplaue illtersecting

h}-*persurfﬂce at a Speciﬁc

point )




Tangential Linearization..../cont’d

* More specitically, we are
mterested i tangents to
functions that pass through the t
Origin.

* The idea 1s that a line that
touches a curve at a pomt 1s ajn
accurate representation of the
function if excursions around
the poiwnt of intersection are
minimal.

» This point of intersection 1s
called the “operating point” of
the system.




Next Class?

» We will go turther nto the
introductory aspects of Time-Domain
Linearization using Tangential

Linearization (Taylor’s Sertes
Approximation Technique)

* See you tn the next class!



