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An Electromechanical System
System : Permanent-Magnet Synchronous Machines

Introductory Remarks

Synchronous machines are machines that have the rotor speed
and the speed of the rotating stator-generated magnetic field
synchronized, hence the name.

Synchronous machines are well known 1n applications requiring
speed reversions and wide-range power variations.

The stator 1s composed of three identical winding distributed 1n
space such that any two successive windings has a space of
120° between them.

When the stator windings are current-fed by a balanced three-
phase AC supply, a turning field 1s generated along the air gap
between the stator and the rotor.

The turning field generated by the stator does not make the
rotor to rotate.

The rotor therefore needs to be excited separately to begin its
own rotation.




An Electromechanical System (cont’d)

<+ Based on the source of this excitation, and hence the elements
attached to, or associated with the rotor, synchronous machines
exist in two variants 1.e. wound-rotor synchronous machines
(WRSMs) and permanent-magnet synchronous machines
(PMSMs).

Stator winding

Stator winding

Adr ga .
=ap Stator

LIS =Th 1 q =Y
Rotor pole Permanent-magnet

Rotor excitation winding Rator (the magnetic civcuir)




An Electromechanical System (cont’d)

»» In WRSMs, the rotor magnetic field is generated by windings
fixed on the rotor.

«¢* These windings are fed by a dc generator to create a
magnetomotive force (MMF) along the air gap between the
stator and the rotor.

¢ The interaction between the turning field created by the stator
and the magnetomotive force created by the windings on the
rotor generates an electromagnetic torque that gets applied to
the rotor and generates a rotation.




An Electromechanical System (cont’d)

Stator windng

Air gap

Rotor (the magnefic circuit)

Stator

Permanent-magned

o In PMSMs, the rotor magnetic field Is generated by permanent
magnets fixed on the rotor,

o These magnets need no external excitation and generate a
magnetomotive force (MME) along the air gap between the
stator and the rotor.

% Acain, the Interaction between the turning field created by the
stator and the magnetomotive force created by the permanent
magnets generaes an electromagnetic torque that gets applied
1o the rotor and generates a rotation.

s The motlons of the turning stator-generated magnetic field and
the rotor reach steady-state when the rotor speed becomes equal
10 the speed of the turning field generated by the stator.




An Electromechanical System (cont’d)

Stator winding

Aur gap

Rotor {the magnetic circuit)

Stator

Permanent-magn
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Mathematical Modelling

Since we are dealing with three-phase systems, the balanced
three-phase positive (or abe) phase sequence yields the
following triplet of equations

x, = Acos(wt+ @)

im
x, = Acos (mf+q:l—?)
2
x.=Acos (mt+q:1+?)

where x could represent, in this case. voltages or currents or
magnetic fluxes.

The three-coordinate frame above is usually stationary or stator-
related.

This frame is difTicult to deal with when control-related
applications arc being considered. This 1s because the voltage
expressions that take the denvatives of the respective {Tuxes in
the system comprise expressions of self and mutual
inductances, and the tri-dimensionality of the equations makes
the equations unduly cumbersome.

Also, there 15 a dependence of the fluxes on both time and rotor
position.




An Electromechanical System (cont’d)

Stator winding

< Because of these issues, a coordinate transformation system
Stator was developed by Park and Concordia to take the stator-related,
position-dependent three-phase [rame (o an equivalent, lower-
size, position-independent rotating direct-axis-quadrature axis
(or d = q) frame,
% This frame has constant inductance terms and all signals are
steady-state sinusoidal along the d- and g- axes.

Alr gap

** Going back to the abc frame, the application of Faraday’s and

Ohm's laws yields the following three-phase stator voltage
P-Cfl.!'l.ﬂlll.‘ll.'l'l.ml?ﬂ-.'l

equations:
Rotor ithe magnefic circui) Vea Rs 0 0 isn d E]sn
. Usp| =|0 Ry 0[] ‘|‘E D
poxis $peanis veel 10 0 RJIi, 0.,
where
v;(i = a,b,c) is the stator voltage for phase i;
ot -als i.;(i = a,b,c)is the stator current for phase i:
0 (i = a,b,c) is the induced flux in the stator windings for
phase i

R, is the stator winding resistance.




An Electromechanical System (cont’d)

b-axis pP-axis

st;\ d-axis
g-axis ] _
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C-aAxXi1s

The Three-Phase abe-Coordinate Frame, The eff Stationary

Two-Phase Coordinate Frame, and the dg Rotating Two-Phase
Coordinate Frame for the PMSM




An Electromechanical System (cont’d)

Stator winding

%+ We can write the above equation in shorthand form as

Alr gap J
[vmhc] - [Rs][imhc] + E[@snhr]

Slator

< In the rotor, a constant flux is created by the permanent magnets
and a set of mutnal fluxes is generated between the magnetic
field of the rotor’s permananet magnets and the rotating
magnetic field generated by the stator.

< These fluxes can be written in the abe-frame as:

P~:rl]1ulltll1-milglh‘l @ — E} EﬂS_ (FH)
a I
o Zm
Rotor {the magnefic circui) lﬂh — Qr cos (p,ﬂ _ ?)
f ZE
b-nxis f-axis E‘JE — E’,-EDS (pﬂ + 3 )

where @ 1s the amplitude of the flux produced by the magnets.
“» We can therefore say that the flux through each of the stator
s windings is the sum of the flux induced by the rotor magnets
aranis and the flux produced by the currents carried by the stator
/’ phases, or

;;E‘;I“ [lﬂ';ﬂbf] = [L”] [isﬂbc] | [@J'ﬂ-bf]




An Electromechanical System (cont’d)

Stator winding

Adr zap i
& Stator

% Thus, the stator voltage equation then becomes

d
[v.mbc] = [Rs] [isnbc] + E[[Lss][is:zbc] + [@?‘ubr]]

d d
[T".mbf] - [Rs][imhr] +E[[Lss] [i.mbr]] +a[[grﬂhr]]
Permanent-magnet & Since d{fdt (.) _ d({dﬁ | dﬂfdt (.) _ dﬂ/{dt - d/da (.} and

dﬁ/dt represents the rotor speed, then the above equation can

Rotor (the magnefic circuit)

F .
=axIs Iﬂ-ﬁ:’ﬁl!’i

be re-wrilten as

Yk

\ d de d
TRENG | ) [vfﬂl.ﬁlf] - [Hs] [i!.'l'!bf.‘] + d_é [[Ls.;'] [iﬂihrﬂ T £§[[Grnhr]]
J-AK i s [vﬁﬂﬂf] = [Rs][imbc] +E “Lss][fsnﬂc]] + ME[[@r'nhﬂ]]




An Electromechanical System (cont’d)

Stator winding

Aar =ap ,
£l staror

Permanent-magnet

Rotor (tive magnesic circuir)

[ 3
h-pxis Iﬂ-ﬁ]i!’i

=axis

a=axis

J=a%i5

PR E

%+ It can be shown that through the use of the Concordia-Park

lransformation
Xa
X
— proanT T
[xq] = P(p) Cs2 lxb
xl’.'
where
cosp —sinp

P =1 .

(p) sinp cosp

with g representing the angular position of the rotating
reference frame, and

-1 0
/E _1f2 vs"'jz

O3z = \IE ) =
— ‘[2 v fH’E

that the stator voltage equations in the dg-frame can be written
H B

[veta) = (Relliaag) + (L] g [[fcaal] + P0@[Lag][icae]

+ p{ﬂﬂ'[@rdq]
where
p is a proportionality constant between the electrical equivalent
of the angular position g and the rotor angular displacement @;
and




An Electromechanical System (cont’d)

Stator winding

Al gap ) ) o - .
S < After appropriate substitutions, the eventual stator voltage

equations in the dg frame can be written as
. dii‘d
Vsqg = Rslsd + Lsd dt 5q sq
dig, E_
5q dt +pm1’gdi’£d+pm\/ /2

—pwl_ i

v, = Ry, + 1

Pt.‘fl.]l.tilll.'lﬂ-l'l'lil.__EI.'I-.'l

Rotor {the magnetic circuit)

With the term pow J 3 / 5 @, being the voltage drop associated

I with the permanent-magnet flux.
%} deaxis % Re-arranging the equations yields
gaXis Sy tp ™y [i], 1
' sd . \
dt L [T’Tsd Rslsd T pm‘[‘sqlsq]
Z-axis ] sd

D o di,, 1
|'|rl|| q _ L ] 3
g} T I v, —Pwlyi, — R, —pm\’ /2 0




An Electromechanical System (cont’d)

Stator winding

Adr gap .
£l sfator

Permanent-magnet

Rotor (the magnefic circui)

F-axis ‘L,ﬁ-i'l"ti"!

Sfeaxis

i ¥ia
I.!.l.l
+ - ' = I-1%is

oo
A=0X15

% If we are doing current control, the two currents £,4 and i,
becomes the outputs i.e.

Y1 = Isq
Y= isq

% The two outputs are also the two states of the system. as seen in
the difterential equation above,

* The two currents {;4 and i, are manipulated by the
corresponding voltages v, and vy, respectively. Therefore, the
inputs are the voltages vg,; and vg,.

% If we use standard state and input notations to replace the
current and voltage symbols respectively, we have

dxl 1
E = L_[i[_RjII + pm[.m:cg + H-l]
5
dx, 1 o
—=—|-pwl.;x; — R.X» ua—m3 :
df qupfdl s.,+..p’2{2'1
N
and the output equations
Y1 =%
Y. =X




An Electromechanical System (cont’d)

Stator winding

AIr 2ap ,
£l stator

% Thus, we can say

, Where
Permanent-magnet
Xy, %o, Uy, 1U,) —R.x; + pwl Xz HU
Retor (the magnetic circui) f 1{: L s [ 17 P 2t 1]
B-nxis "Iﬂ-axiﬁ fE(I[,-IE:ul_nuE:l )

Vol

1 f3_
== ~pwlsgx; — Ry +Uy —pw 7)o 0
.’i'l‘.[ 4
Gq(xy, %0, up,up) = Xy
922y, %0, Uy, u2) = X,




An Electromechanical System (cont’d)

R

#

Determination of Equilibrinm Points

Again, for equilibrium, the states must be steady i.e. the states
must be unchanging with time 1.e.

.1."1 — ﬂ,.I'.g = 0
This leads to
dxy
— x X, L _,'L[ _ 0
di F1lxy, x2, vy, uz)
X ( ) =0
dr Fz(x3,.x2, Uy, Uz ) =

Again, we have 2 equations and 4 unknowns, this cannot be
solved as it is.

We therefore again assign nominal values to the 2 inputs for
which we desire to determine steady-state information as we
did for the two previous cases.

Solving the equations for the nominal input values and for
specilic parameter values will give the values ol the direct- and
quadrature-axes currents at steady state,
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Tangential Linearization

From the last class, we said that a tangent
to a nonlinear curve at a particular point is
a good representation of the curve if there
are minimal excursions about the point.

We called this point the “operating point”.

Our task is therefore to find the equation
of the line that touches a specific given
operating point along a nonlinear curve.

The most common tool for this is the
“Taylor’s Series Approximation”.




Tangential Linearization......cont’d

Taylor’s Series Expansion:

+ We recall the Taylor’s Series expansion of the single-input,
single-output function
y=gu)
with respect to the operating point ¥ = g(U) as
, (u — ]3
y=g9U)+u-U)g'U)+—:;

[1.!—[:')3 " (u—U)*
3r 9 O F

g+ () + -

or

A 2
y=gU) + Au|g'(U)) +( ";) lg" (U)]
(Au)? (Au)*¥

m k
+ T (U) + -+ o gt(Uu) +




Tangential Linearization......cont’d

Taylor's Series Expansion (2 Inputs, 1 Output)
+ For the case of two Inputs and an output
y =gty tp)
with respect to the operating point ¥ = g(Uy, U,), we have
dg (Uila UEJ dg {Uila UE)
y=g(Uy,Uy) + (uy - Uy) t

ol
iy 1) i,

(. du,0,) iq(U,1,)

] Ll 1Y

'I'E-(“:l_{"i] i, + 2{ug = Uy)(uy - Uy) dudr,




Tangential Linearization......cont’d

Taylor's Series Expansion (n Inputs, 1 Output):
« For the case of n inputs and an output

v =g(ug, Uz, ..., Uy
with respect to the operating point ¥ = g(Ul, Us, ..., Uy,

¥y = H(U’l_r Us,, .. :I't:] + Z K; ["j"“*:]
1 2
WL Z[Hﬂmul;, 1+ zz[ﬁ-uﬁutﬁu}] .
- =1 j=
where
d oy, s, ..., U
K; = g(Uu,y, Uy n)
B‘H.I'
K.. — BEH{:U‘I-UEJ "'-Uﬂ,:]
o E “_EE
o _ 99Uy Us, ., Uy)

H ﬂ 'H!'_‘H.,'




Tangential Linearization......cont’d

Taylor’s Series Expansion (n Inputs, 1 Output)(cﬁ:ntd,):

» Since
y—g(Uy Uy, ... U) =y-Y=A4y

we have

=ZK;? (ﬂ“i)"'% Z ()] +ZZ[K,_jﬂu,ﬂu 4

i=1 i=1j=1




Tangential Linearization......cont’d

Taylor’s Series Expansion (Approximation for Small
Excursions):

* Since excursions around the operating point are minimal, we
argue that Au; will be so small that
A" 0(m=2;mel;i=1,2,..,n)

+ We therefore truncate all expressions containing Au;™ for
m = 2 to yield the equation

n
Ay ~ Z K:(Au;) = KyAuy; + K-Au, + -+ K, Au,
i=1
where




Tangential Linearization......cont’d

Taylor’s Series Expansion (Multivariable Static Relations):

« For the case of a multivariable system of n inputs and q outputs

Vi =g1(uy,uy, ..., u,)
Y2 = ga2(uy,uy, ..., u,)

Yq = gq(ul, Uz, ..., Uy)

with respect to the operating point
Uy, U, ..., U,)
we linearize each of the g output equations to get
Ay, ~ Ky Auy + K,Au, + -+ Ky, Au,
Ay, & Ky Auy + Ky Au, + -+ Ky Auy,

Ayg & Kg1Aug + Kgp Aty + --- + KgpAuy,




Tangential Linearization......cont’d

Tﬂj;lnr’s Series E:-;pmlsinn

(Multivariable Static Relations):

* In matnx form, the lineanzed expression becomes

'ﬂ}"]__ _Hll le Hln- 'ﬂﬂl_
ﬂ}"z ~ Hzl HEE HETL ﬂ.'ﬂ,z
_E"J"q, _qu qu Hq*n-__ﬂ"“q,_
where
ay;
Kij "o M

* Scaredr No reason to bel

* With examples, you'll see that 1t 15 all actually VERY simple!
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Examples

Example 1
Question:

*+ Surge drums are important process control
faciities with applications in such processes as
mumng, hydroelectric power generation and
process industries.

+ A surge drum 1s a standpipe or storage reservoir
at downstream end of a feeder or dam or
barrage pipe to absorb a sudden nise 1n pressure
and provide extra flud during a drop in
pressure.

* In essence, a surge drum 15 4 pressure regulator.




Examples

Example 1

Question (contd.):

For a particular gas surge drum in a
chemucal process, with a flow
coefficient being [ | the outlet molar
flow rate ¢ 1s related to the gas drum
pressure P and the pressure of the
downstream header piping Py by the
nonlinear relationship

q=pJP—Py

Taking a specific downstream header
piping pressure Pp; and the
corresponding molar flow rate g; as
the operating point values, ineanize
the nonlinear expression.

« Take the manipulated
variable as g and the
controlled variable as
Py,.

« Also take P as a
constant.




Examples

Example 1
Solution:

« We recall the linearized
expression

n
Ay = Z K; (Au;)
i=1

— Hiﬂui -I— Hzﬂug -I— + E-nﬂi!ﬂ
where

_ 9y |

9 U; M

K;

* Hote that the “manipulated
variable™ is another name for the
plant input, while the
“controlled variable” is another
name for the plant output.

Let

The nonlinear expression
then becomes:

u=pPy

We are dealing with 1 input
and 1 output.

Therefore,
n=1




Examples

Example 1
Solution (contd.):

» Thus, our linearized expression
becomes

Ay & Z K;(Au;) = Ky Auy
i—=1
where
ay

K. =
1 d uy

|

» Let us do away with the “1”
subscript, since the number of
inputs is 1 i.e.

* We now proceed to find 9y

j

* Let us make y the subject of
the formula in the original
nonlinear expression i.e.

u=p4g,/P—vy

[ e
VY

» Therefore,

ﬂ}r_ uh /1 _—Eu
ﬂ‘_z(ﬁ)(ﬁ)‘ Iz




Examples

Example 1

Solution (contd.):
* The alternative is to directly

find S—;’ and then invert the

result to get ? i.e.

43

1
z—: = p (% (P — }'}_3{—1])
du [
dy  2./P—y
ay 2/P—y
ou B
* Since
u = P—vy

* Therefore,

ay * ()

du B
dy —Zu
du B2

« At the operating point,

u=q;
» Therefore,
—— = —24;
T au M p2

» The linearized expression is
theretfore:

—2q;

Ay = H’.ﬂu=| e Au




Examples

Example 1
Solution (contd.):

» For consistency of notations, let
us return Lhe original variables
in place of y and u i.e.

APy =~ f'
B

Ag

» We can also decide to retain the
v and u notations i.e.

f2
whera
Ay = AP,
u; = f;

Summary of Results
Example 1:

_2q.
APp = [ B2 : Aq
OR
—ZHE
Ay = 22 Au
where
Ay = APy,
U = qj
Au = Ag




Examples

Example 2

Question:

» Variable-separation displacement
SENSOIs are capacltive sensing elements
that sense displacement changes by
corresponding capacitance changes

» They utilize the relationship between the
capacitance between plates and the
distance between the plates to measure
displacement.

* Thus, the displacement x causes the
plate separation to increase to d + x so
that the capacitance becomes

EHEA

i =
d+ x

Variable
separation




Examples

Example 2

Question:

« For mimimal excursions about
the operating point

x=X —l
i

find an approximate linear 0

relationship between a d
displacement change and the , ! ,
corresponding capacitance Variahle

change of the sensor using

separation
Taylor’s Series approximation.




Examples

Example 2
Solution:

 We again recall the linearized . The nonlinear expression

exprissic:n then becomes:
£pEA
ﬂyﬁzﬁi(ﬂud Y=
i=1
= K;Au; + K-Au-», + -+ K_Au
o e "™ . We are again dealing with
where { input and 1 output
. Ay | input and 1 output.
) U; M

* Therefore, as in Example

. 1
+ Again, we let ’

U=Xx
y=C

n=1




Examples

Example 1

Solution (contd.):

» Thus, again, our linearized
expression becomes

ay
Ay = KAu = |— |p| Aue
du

» We again proceed to find j_:'
_ EEE}I
5 Y= d+u
¥ o
— = Al—1)(d + 1
3y Fof (—1)(d +u)™=(1)
ay EqEA

du  (d+u)?

» At the operating point,
u=x=X

+ Theretore,

* The linearized expression is
therefore:

Ay =~ KAu = |—

EqEA ],ej.
(d+x)2] "

» Again, for consistency of notations,
let us return the original variables

in place of v and u i.e.

eqeA
(d + X)?

AC ~ Ax




Examples

Example 2
Solution (contd.):

- We can also decide to
retain the v and u
notations 1.e.

[ £oeA ]
Ay ~ Au

(d + u;)?
where
Ay = AC
u; =X
Au = Ax

Summary of Results

Example 2:
£oEA

d+ X)*

AC ~ |— Ax
eRse




Assignment 1
L

Question:

* In place of the vanable-separation
capacitive displacement sensor of
Example 2, we could decide to use the
inductance principle to yield variable
reluctance displacement sensors

* By considenng the total reluctance of
the magnetic circuit as a sum of the
reluctances of the ferromagnetic core
(toroid), the variable air gap and the
ferromagnetic plate (armature), the
relatonship below 1s found to relate the
displacement x to the overall self-

inductance L of the sensi.ng element:

nE

L= _
R, + k(d + x)

Lo

peencabiliy Uasinal thiy

pifd

Radim
-l-'-\.
|. L |
HEAR Y
d Argp
:'=,.-' e mn s el I|LI
/
Amnahae
pemeateliy l¢]



Assignment 1

Question (contd.):

« 115 the number of turns of the coil on
the ferromagnetic core

» Ry i1s the reluctance at zero air gap,
given mathematically by
R |1 1
R = +
HoT" | T pigt
With R, ug, r, ., and u, (as shown in
the upper figure), and t being the
armature height of flux concentration
(also as shown in the lower figure)

« kis a constant given by
2
HpTtT
* d 1s the initial air-gap betweep core
and armature

I =

s




Assignment 1
Question (contd.):

« Assume that the displacement being

measured is small enough for a linear
approximation to be performed

« For a specific displacement value
x=X
as the operating point, use Taylor’s
Series approximation to develop a
linear model for the relationship
between the input (displacement)

and the output (self-inductance of
the sensing element).

Ciore
permeaniby o _ Cenird 1

Madres
I
d Argp
1a * H
s
Amstac
permeanilicy 11y i




Next Class?
* We will look at Taylﬂr’s Series

Approximation for Nonlinear
Differential F.quations and
Nonlinear State Equations

* See you tn the next class!



