

Session: 2019/2020	Semester: Second	Unit: 2	Duration: 4 days

Instruction(s): Answer all the questions.

Question 1 [20 Marks]

The model of a single-input single-output tank system is given as in Equation (1),

$$\frac{dh}{dt} = \frac{\left(F_i - \beta\sqrt{h}\right)}{A}$$

where the area of the tank, $A = 0.5m^2$, the arbitrary constant, $\beta = 1.5 \frac{m^2}{\min}$ and the input flowrate, $F_i = 0.7 \frac{m^3}{\min}$. Taking the initial value of the output variable to be 0.01 *m*, develop and solve the Simulink model of the system using an appropriate simulation time interval.

NB: Only Simulink model but no MATLAB mfile should be used.

(1)