ASSIGNMENT 2

You are to submit this assignment through the link; rominiyiol@abuad.edu.ng and engromslawani @ yahoo.com

DEADLINE : On or before 18 th April, 2020;;; 12 midnight
Any assignment submitted after the deadline may not be graded

QUESTION 1

Water of viscosity 0.9 Poise and relative density 0.9 flows through a pipe of diameter $\mathbf{1 2 0} \mathbf{~ m m}$ and length $\mathbf{1 2 m}$. Compute (a) The Reynold"s number of flow if $\mathbf{7 8 5 N}$ of oil was collected in $\mathbf{2 5}$ seconds (b) What is the pressure difference at the ends of the pipe.

Ans: $\operatorname{Re}=375.2$ and since it is less than 2000 , the flow is hence laminar
$P 1-P 2=753.6 \mathrm{~N} / \mathrm{m}^{2}$ and $\mathrm{h}_{\mathrm{f}}=0.085 \mathrm{~m}$ of oil.

QUESTION 2

A smooth pipe 60 mm diameter, 850 m long conveys water at the rate of $8.5 \mathrm{Lit} / \mathrm{sec}$. Kinematic viscosity is given as 0.5 stokes and the coefficient of friction is given by $f=\frac{0.0791}{R e^{1 / 4}}$ where $R e=$ Reynold's number. Calculate (a) head loss $\boldsymbol{h}_{\boldsymbol{f}}(\mathrm{b})$ wall shearing stress (c) Reynold's number and hence determine the nature of flow.
$(a) h_{f}=110.73 \mathrm{~m}$
(b) $\tau_{o}=19.17 \mathrm{~N} / \mathrm{m}^{2}$
(c) 120,000
(d) Turbulent flow

