
Basic Elements of Assembly Language

Assembly language was designed to run in little memory and consists of mainly low-level,

simple operations. Then why does it have the reputation of being difficult to learn? After all,

how hard can it be to move data between registers and do a calculation? Here’s a proof of

concept—a simple program in assembly language that adds two numbers and displays the

result:

main PROC

mov eax,5 ; move 5 to the EAX register

add eax,6 ; add 6 to the EAX register

call WriteInt ; display value in EAX

exit ; quit

main ENDP

We simplified things a bit by calling a library subroutine named WriteInt, which itself

contains a fair amount of code. But in general, assembly language is not hard to learn if

you’re happy writing short programs that do practically nothing.

Next, we describe basic elements of Microsoft Macro Assembler (MASM) syntax. Knowing

these elements will help you to write your first programs in assembly language.

 Integer Constants

An integer constant (or integer literal) is made up of an optional leading sign, one or more

digits, and an optional suffix character (called a radix) indicating the number’s base:

[{+| -}]digits[radix]

A hexadecimal constant beginning with a letter must have a leading zero to prevent the

assembler from interpreting it as an identifier. e.g 0xFFAC

Integer Expressions

An integer expression is a mathematical expression involving integer values and arithmetic

operators. The expression must evaluate to an integer, which can be stored in 32 bits (0

through FFFFFFFF). The arithmetic operators are listed in Table according to their

precedence order, from highest (1) to lowest (4). The important thing to realize about integer

expressions is that they can only be evaluated at assembly time. These are not runtime

expressions.

Real Number Constants

Real number constants are represented as decimal reals or encoded (hexadecimal) reals. A

decimal real contains an optional sign followed by an integer, a decimal point, an optional

integer that expresses a fraction, and an optional exponent:

[sign]integer.[integer][exponent]

Following are examples of valid real number constants:

2.

+3.0

-44.2E+05

26.E5 . At least one digit and a decimal point are required.

Character Constants

A character constant is a single character enclosed in single or double quotes. MASM stores

the value in memory as the character’s binary ASCII code. Examples are 'A', "d"

String Constants

A string constant is a sequence of characters (including spaces) enclosed in single or double

quotes:

'ABC'

'X'

"Good night, Gracie"

'4096'

Embedded quotes are permitted when used in the manner shown by the following examples:

"This isn't a test"

'Say "Good night," Gracie'

Reserved Words

Reserved words have special meaning in MASM and can only be used in their correct

context. There are different types of reserved words:

•Instruction mnemonics, such as MOV, ADD, and MUL

•Register names

•Directives, which tell MASM how to assemble programs

•Attributes, which provide size and usage information for variables and operands. Examples

are BYTE and WORD

•Operators, used in constant expressions

•Predefined symbols, such as @data, which return constant integer values at assembly time

Identifiers

An identifier is a programmer-chosen name. It might identify a variable, a constant, a

procedure, or a code label. Keep the following in mind when creating identifiers:

•They may contain between 1 and 247 characters.

•They are not case sensitive.

•The first character must be a letter (A..Z, a..z), underscore (_), @ , ?, or $. Subsequent

characters may also be digits.

•An identifier cannot be the same as an assembler reserved word.

Here are some valid identifiers:

myFile, xVal,_12345, myvar, count123 etc.

Directives

A directive is a command embedded in the source code that is recognized and acted upon by

the assembler. Directives do not execute at runtime. Directives can define variables, macros,

and procedures. They can assign names to memory segments and perform many other

housekeeping tasks related to the assembler. In MASM, directives are case insensitive. For

example, it recognizes .data, .DATA, and .Data as equivalent. The following example helps

to show the difference between directives and instructions. The DWORD directive tells the

assembler to reserve space in the program for a doubleword variable. The MOV instruction,

on the other hand, executes at runtime, copying the contents of myVar to the EAX register:

myVar DWORD 26 ; DWORD directive

mov eax,myVar ; MOV instruction

Although all assemblers for Intel processors share the same instruction set, they have

completely different sets of directives. The Microsoft assembler’s REPT directive, for

example, is not recognized by some other assemblers.

Defining Segments

One important function of assembler directives is to define program sections,orsegments

. The .DATA directive identifies the area of a program containing variables:

.data

The .CODE directive identifies the area of a program containing executable instructions:

.code

The .STACK directive identifies the area of a program holding the runtime stack, setting its

size:

.stack 100h

