Plant Cell and Tissue Culture

- Cultural techniques for regeneration of functional Plants from embryonic tissues, tissue fragments, calli, isolated cells, or protoplasts.
- The *in vitro* and aseptic **cultivation** of any plant part on a nutrient medium. This includes:

Cell culture

Tissue culture

Organ culture

- It is an essential part of Plant Biotechnology because
 - •Genetic engineering of plants occurs at the level of a single cell.
 - •The cell must develop into a whole plant through cell and tissue culture for applicable uses.

Plant Biotechnology

Hinges on this ability of plants - The ability of a single plant cell to give rise to a whole plants. This property is unique to plants.

Totipotent cells

Are cells that have retained the **ability to divide and differentiate into a mature plant** if placed in the appropriate environment.

Totipotency

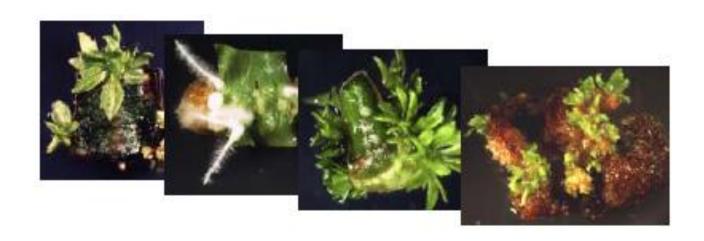
The ability of undifferentiated plant tissues to differentiate into functional plants when cultured in vitro.

Competency

The **endogenous potential** of a given cell or tissue to develop in a particular way.

Organogenesis

The process of initiation and development of a structure that shows natural organ form and/or function.


Embryogenesis

The process of initiation and development of embryos or embryolike structures from somatic cells (Somatic embryogenesis).

Differentiation

The development of cells or tissues with a specific function and/or the regeneration of organs, organ-like structures (roots, shoots, etc.) or embryos.

Development of organs (roots, buds, shoots, flowers, etc.) or embryos (embryo-like structures) from **points of origin**, including callus.

Basis for Plant Tissue Culture

- Two Hormones Affect Plant
- Differentiation:
- Auxin: Stimulates Root Development
- Cytokinin: Stimulates Shoot Development
- Generally, the ratio of these two hormones can determine plant development:
- $\uparrow Auxin \downarrow Cytokinin = Root Development$
- ↑ Cytokinin ↓ Auxin = Shoot Development
- Auxin = Cytokinin = Callus Development

Nutrient medium

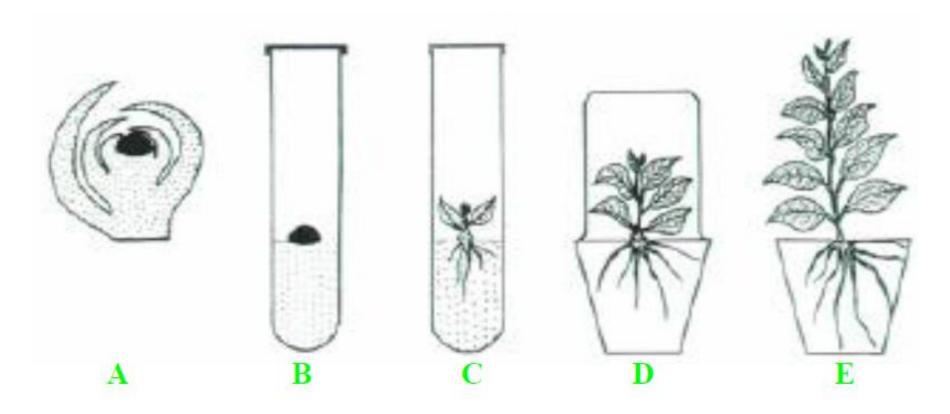
Mixture of substances on or in which cells, tissues, or organs can grow.

- Inorganic nutrients
 - Macronutrients, N, P, K, Ca, Mg, Cl, Na
 - Micronutrients, Cu, Zn, Mn, Fe, Bo, Mo, Co, I
- Organic nutrients
 - Vitamins
 - Amino acids
 - Complex organic supplements, Coconut milk, yeast extract
- Carbon source sucrose
- *Growth regulators* (hormones)
- Agar (to make the medium semi-solid)

Factors Affecting Plant tissue culture

- **Growth Media** Minerals, Growth factors, Carbon source, Hormones
- Environmental Factors Light, Temperature, Photoperiod, Sterility, Media.
- **Explant Source** Usually, the younger, less differentiated the explant, the better for tissue culture.
- Genetics
- Different species show differences in amenability to tissue culture.
- In many cases, different genotypes within a species
 will have variable responses to tissue culture.

Plant tissue culture techniques


- 1. Micropropagation
- 2. Somaclonal breeding
- 3. Embryo culture
- 4. Anther/Microspore culture
- 5. Organogenesis
- 6. Embryogenesis
- 7. Protoplast isolation, culture and fusion

1. Micropropagation

- The art and science of plant multiplication in vitro
- Usually derived from meristems (or vegetative buds) without a callus stage
 - Tends to reduce or eliminate somaclonal variation, resulting in true clones
- Can be derived from **other explants or callus** (but these are often problematic)

Steps of Micropropagation

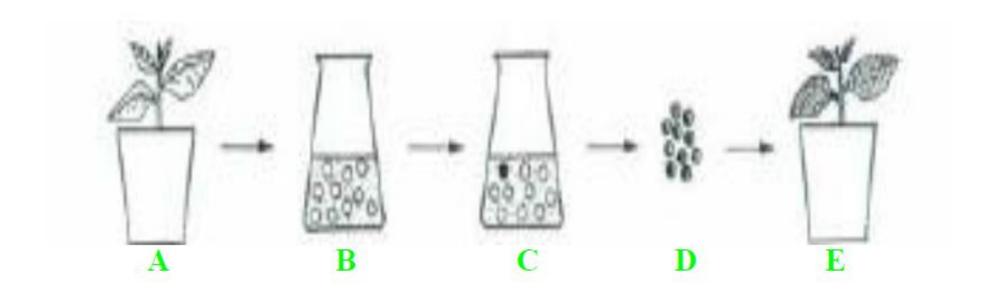
- Stage 0 Selection and preparation of the mother plant
 - sterilization of the plant tissue takes place
- Stage I Initiation of culture
 - explant placed into growth media
- Stage II Multiplication
 - explant transferred to shoot media; shoots can be constantly divided
- Stage III Rooting
 - explant transferred to root media
- Stage IV Transfer to soil
 - explant returned to soil; hardened off

A: Apical meristem showing section to be excised

B: Excised meristem on agar medium

C: Plantlet regenerated from excised meristem tip

D: Plantlet transferred to sterile soil


E: Virus-free plant growing in soil

2. Somaclonal Variation and Mutant Breeding

- Somaclonal variation is a general phenomenon of all plant regeneration systems that involve a callus phase
- Two general types:
- 1. Heritable, genetic changes (alter the DNA)
- 2. Stable, but non-heritable changes (alter gene expression, AKA epigenetic)
- Callus Growth in Tissue Culture
 - Can screen large number of individual cells
 - Chromosomal aberrations, point mutations
 - Uncover genetic variation in source plant

Somaclonal Breeding Procedures

- **■** Use plant cultures as starting material
 - Idea is to target single cells in multi-cellular culture
 - Usually suspension culture, but callus culture can work (want as much contact with selective agent as possible)
- **■** Optional: apply physical or chemical mutagen
- **■** Apply selection pressure to culture
 - Target: very high kill rate, you want very few cells to survive, so long as selection is effective
- **■** Regenerate whole plants from surviving cells

A: Haploid plant from cultured tissue

B: Cell suspension from haploid plant

C: Mutant cell in suspension culture

D: Aggregate of mutant cells

E: Haploid plantlet that exhibits the mutant character