FLUID POWER [HYDRAULICS AND PNEUMATICS]

FLUID POWER

It is the technology that deals with the generation, control, and transmission of power using pressurized fluids.

- * **HYDRAULICS**-when fluid is liquid.
 - Ex: petroleum oils, synthetic oils and water.
- PNEUMATICS-when fluid is gas.
 - Ex: air.

Basics methods of transmitting power

- Electrical
- Mechanical
- Fluid power

Advantages :

- 1. Ease and accuracy of control
- 2. Multiplication of force
- 3. Constant force or torque
- 4. Simplicity, safety, economy.

Drawbacks

- Hydraulic oils are messy.
- Leakage is impossible to eliminate.
- Possibility of fire accidents.
- System slows down when leakage occurs.
- Heavier in weight.
- Valve operations are difficult.

Classification

Based on the control system

Open loop system

Closed loop system

- Based on the type of control
- 1. Fluid logic control- using logic gates
- 2. Electrical control- electrical devices
- 3. Electronic control- micro electronic device

Basic Components

- Actuator-fluid power to mechanical power
- Pump-to pump fluid from reservoir
- Valves- control the direction
- Power supply- motor to drive the pump
- Reservoir- to store fluid
- Piping- to carry fluid
- Filters- remove dust and foreign particles
- Pressure regulator- to maintain pressure

Physical properties

- Good lubricity
- Ideal viscosity
- Chemical stability
- High degree of incompressibility
- Fire resistance
- Good heat transfer capability
- Low density
- Foam resistance
- Non toxicity

Fluids: liquids + gases

Fluid refers to both gases and liquids.

Fluids

- A liquid is fluid that for a given mass it will take the shape of its container.
- Liquids are incompressible.

Gases

- Air is the only commonly used gas in fluid systems because its inexpensive and readily available.
- Its compressible

Energy in hydraulic systems

It's the ability to perform work.

Pascal's law: pressure applied to a confined fluid is transmitted equally in all directions throughout the fluid and acts perpendicular to the surfaces in contact with the fluid.

Px=Py=Pz

Applications:

Hydraulic Jack, press etc...

Continuity Equation

It states that for steady flow in a pipe line the fluid flow rate is same for all locations of the pipe.

Q=a1v1=a2v2

Bernoulli's Equation

By conservation of energy, the total energy possessed by the fluid at point 1 is equal to the energy possessed by fluid at point 2.

≻ Z1+P1/Y+V2/2g = C

Frictional Losses in pipelines

Losses in pipe valves and fittings.

Laminar and turbulent flow:

- fluid flowing in smooth layers or laminae is laminar flow and fluid flowing in random and fluctuated is known as turbulent.
- Reynold's Number[NR]
- If N_R less than 2000 its laminar.
- If N_R greater than 2000 its turbulent.

DARCY 'S EQUATION

H_L=fLv2/2gd