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MatLab Function Example for Numeric Solution of Ordinary Differential 

Equations 

 
This handout demonstrates the usefulness of Matlab in solving both a second-order linear ODE as well as a 

second-order nonlinear ODE. 

 

Example 1  - A Generic ODE 
 

Consider the following ODE: 

 

      ( )x bx cx f t    

 

   where b c  2,    ( ) ( ) ,x x0 0 0    f t u t( ) ( ) 1  

 

The ODE needs to be re-written as a system of first-order differential equations: 

 

 Let x t x t1( ) ( )  

Then x t x t x t2 1( ) ( )  ( )   

And   ( ) ( ) ( ) ( ) ( )x t x t f t bx t cx t2      

 

To Summarize: 
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Which can be rewritten as: 
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MatLab “solves” this by calculating the numerical approximation of the following integral. 

  x t x t x dt
t( ) ( ) ( )  0 0    

 

To accomplish this, MatLab needs to have a way of knowing what ( )x  is at any time  . We provide this by 

writing an M-file function which fits the calling sequence expected by MatLab’s integrating routines, ode23 and 

ode45. The first routine, ode23, integrates a system of ordinary differential equations using 2nd and 3rd order Runge-

Kutta formulas.  [T,Y] = ODE23('yprime', [T0 Tfinal], Y0) integrates the system of ordinary differential equations 

described by the M-file YPRIME.M, over the interval T0 to Tfinal, with initial conditions Y0.  [T, Y] = ODE23(F, [T0 

Tfinal], Y0, TOL, 1) uses tolerance TOL and displays status while the integration proceeds. The other routine, ode45, 

uses 4th and 5th order Runge-Kutta formulas. [T,Y] = ODE45('yprime', [T0 Tfinal], Y0) integrates the system of 

ordinary differential equations described by the M-file YPRIME.M, over the interval T0 to Tfinal, with initial conditions 

Y0.  [T, Y] = ODE45(F, [T0 Tfinal], Y0, TOL, 1) uses tolerance TOL and displays status while the integration  

proceeds. 

 

To begin, open the MatLab application. This is done by clicking Start -> All Programs->Math Programs -> 

MATLAB R2015a. In the menu bar of the MatLab Command Window, select the New Script button in the File pane 

of the Home tab. The Matlab Editor will appear. Type the following: 
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     function xdot = exmplode(t,x) 
        % EXMPLODE Evaluation of ODE Derivative 
        % For Second order ODE 
        % x'' + bx' + cx = f(t) 
        % b=c=2 
        % f(t)= u(t-2) 
        xdot = [0 1;-2 -2]*x + [0;1]*(t>=2); 
        % end of exmplode.m 
 

*Note: % denotes a comment line 

*Note that (t>=2) is just MatLab’s way of duplicating the delayed unit step 
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Save the file as exmplode.m. 

 

The steps required to carry out the integration of this system are best placed in an M-file script. Follow the previous 

steps to create a script called runexmpl.m, with the following script: 

 
              % Script which drives ODE solution for ODE in exmplode.m 
        xphi = [0;0];           % initial condition 
        tphi = 0;       % Initial time 
        tfin = 10;      % Final time 
        [t,x] = ode45('exmplode',[tphi tfin],xphi); 
        plot(t,x(:,1))      % Plot of solution vs. time. 

 

 

Execute the first example by typing runexmpl at the MatLab command prompt and the plot will appear.  
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To add x and y axis labels and a title to the plot, go to the menu in the graph window under Insert click X label, 

once you have added the x label text do the same for the Y label and Title. 

 

 

Your plot should now resemble the one above. 

 
Example 2  -  A Nonlinear ODE, The Classic Pendulum Problem. 
 

Take the equation for the pendulum: 

 

  ml x clx mgl x2 0  sin( )      

  where:  m = mass = 1kg 

   l = length = 0.5m 

   c = damping constant = 0.1 

   x = angle from vertical in radians  x( )0 6   and  ( )x 0 0  

   g = 9.81 m s2
 

 

As in example 1, the equation needs to be re-written as a system of first-order differential equations. After this is 

done, we are left with: 

     sin( )x
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For this example, let the following be true: 

 

   x x1  , and x x x2 1   . 

 

Assuming this, we end up with: 
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The important parts of this are: 

 

   x x1 2 , and   sin( )x
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To get the above equation into MatLab, it is once again easiest to write an M-file Script. Follow the steps above, 

and create the following Script. 

 
         function xdot=pendemo(t,x) 
    %  PENDEMO Pendulum ODE derivative evaluation 
    xdot(1,1) = x(2,1); 
    xdot(2,1) = -0.1/(1*0.5)*x(2,1) - 9.81/0.5*sin(x(1,1)); 
    % End of pendemo.m 

 

 

Save the file as pendemo.m. And, just like before, it is easiest to create a script and place it in an M-file to carry 

out the numerical analysis.  Create yet another Script, entering the text below: 

 

  
    % Script file which drives ODE solution of ODE in pendemo.m 
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    xphi = [pi/6;0]; 
    tphi = 0; 
    tfin = 15; 
    [t,x] = ode45('pendemo',[tphi tfin],xphi); 
    plot(t,x(:,1)) 

 

 

Save the file as runpend.m, then execute this example by typing runpend at the MatLab command prompt. 

The plot window will appear; to label the plot, use the following commands within the MatLab Command window: 

 

 title(‘Solution vs. Time’) 

 xlabel(‘Time’) 

 ylabel(‘Amplitude’) 

 

The finished plot should look somewhat like the following: 

 

 

 
 

Note: If you are going to import a MatLab plot into MS Word, you must use a special procedure in order for the plot 

to display and print correctly in Word. To get instructions for this, type help word from the MatLab command prompt. 

 


