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3.1 Introduction and overview

The security of many public-key cryptosystems relies on the apparent intractability of the
computational problems studied in this chapter. In a cryptographic setting, it is prudent to
make the assumption that the adversary is very powerful. Thus, informally speaking, a com-
putational problem is said to be easy or tractable if it can be solved in (expected)1 polyno-
mial time, at least for a non-negligible fraction of all possible inputs. In other words, if there
is an algorithm which can solve a non-negligible fraction of all instances of a problem in
polynomial time, then any cryptosystem whose security is based on that problem must be
considered insecure.

The computational problems studied in this chapter are summarized in Table 3.1. The
true computational complexities of these problems are not known. That is to say, they are
widely believed to be intractable,2 although no proof of this is known. Generally, the only
lower bounds known on the resources required to solve these problems are the trivial linear
bounds, which do not provide any evidence of their intractability. It is, therefore, of inter-
est to study their relative difficulties. For this reason, various techniques of reducing one

1For simplicity, the remainder of the chapter shall generally not distinguish between deterministic polynomial-
time algorithms and randomized algorithms (see §2.3.4) whose expected running time is polynomial.
2More precisely, these problems are intractable if the problem parameters are carefully chosen.
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88 Ch. 3 Number-Theoretic Reference Problems

Problem Description

FACTORING Integer factorization problem: given a positive integer n, find
its prime factorization; that is, write n = pe11 p

e2
2 . . . p

ek
k where

the pi are pairwise distinct primes and each ei ≥ 1.
RSAP RSA problem (also known as RSA inversion): given a positive

integer n that is a product of two distinct odd primes p and q, a
positive integer e such that gcd(e, (p− 1)(q − 1)) = 1, and an
integer c, find an integerm such thatme ≡ c (mod n).

QRP Quadratic residuosity problem: given an odd composite inte-
ger n and an integer a having Jacobi symbol

(
a
n

)
= 1, decide

whether or not a is a quadratic residue modulo n.
SQROOT Square roots modulon: given a composite integern and a ∈ Qn

(the set of quadratic residues modulo n), find a square root of a
modulo n; that is, an integer x such that x2 ≡ a (mod n).

DLP Discrete logarithm problem: given a prime p, a generator α of
Z
∗
p, and an element β ∈ Z∗p, find the integer x, 0 ≤ x ≤ p− 2,

such that αx ≡ β (mod p).
GDLP Generalized discrete logarithm problem: given a finite cyclic

groupG of order n, a generator α of G, and an element β ∈ G,
find the integer x, 0 ≤ x ≤ n− 1, such that αx = β.

DHP Diffie-Hellman problem: given a prime p, a generator α of Z∗p,
and elements αa mod p and αb mod p, find αab mod p.

GDHP Generalized Diffie-Hellman problem: given a finite cyclic group
G, a generator α ofG, and group elements αa and αb, find αab.

SUBSET-SUM Subset sum problem: given a set of positive integers
{a1, a2, . . . , an} and a positive integer s, determine whether or
not there is a subset of the aj that sums to s.

Table 3.1: Some computational problems of cryptographic relevance.

computational problem to another have been devised and studied in the literature. These re-
ductions provide a means for converting any algorithm that solves the second problem into
an algorithm for solving the first problem. The following intuitive notion of reducibility
(cf. §2.3.3) is used in this chapter.

3.1 Definition Let A and B be two computational problems. A is said to polytime reduce to
B, written A ≤P B, if there is an algorithm that solves A which uses, as a subroutine, a
hypothetical algorithm for solving B, and which runs in polynomial time if the algorithm
for B does.3

Informally speaking, if A polytime reduces to B, then B is at least as difficult as A;
equivalently, A is no harder than B. Consequently, if A is a well-studied computational
problem that is widely believed to be intractable, then proving thatA ≤P B provides strong
evidence of the intractability of problemB.

3.2 Definition Let A and B be two computational problems. If A ≤P B and B ≤P A, then
A and B are said to be computationally equivalent, written A ≡P B.

3In the literature, the hypothetical polynomial-time subroutine for B is sometimes called an oracle for B.
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§3.2 The integer factorization problem 89

Informally speaking, if A ≡P B then A and B are either both tractable or both in-
tractable, as the case may be.

Chapter outline

The remainder of the chapter is organized as follows. Algorithms for the integer factoriza-
tion problem are studied in §3.2. Two problems related to factoring, the RSA problem and
the quadratic residuosity problem, are briefly considered in §3.3 and §3.4. Efficient algo-
rithms for computing square roots in Zp, p a prime, are presented in §3.5, and the equiva-
lence of the problems of finding square roots modulo a composite integer n and factoring
n is established. Algorithms for the discrete logarithm problem are studied in §3.6, and
the related Diffie-Hellman problem is briefly considered in §3.7. The relation between the
problems of factoring a composite integer n and computing discrete logarithms in (cyclic
subgroups of) the group Z∗n is investigated in §3.8. The tasks of finding partial solutions
to the discrete logarithm problem, the RSA problem, and the problem of computing square
roots modulo a composite integer n are the topics of §3.9. The L3-lattice basis reduction
algorithm is presented in §3.10, along with algorithms for the subset sum problem and for
simultaneous diophantine approximation. Berlekamp’s Q-matrix algorithm for factoring
polynomials is presented in §3.11. Finally, §3.12 provides references and further chapter
notes.

3.2 The integer factorization problem

The security of many cryptographic techniques depends upon the intractability of the in-
teger factorization problem. A partial list of such protocols includes the RSA public-key
encryption scheme (§8.2), the RSA signature scheme (§11.3.1), and the Rabin public-key
encryption scheme (§8.3). This section summarizes the current knowledge on algorithms
for the integer factorization problem.

3.3 Definition The integer factorization problem (FACTORING) is the following: given a
positive integer n, find its prime factorization; that is, write n = pe11 p

e2
2 · · · p

ek
k where the

pi are pairwise distinct primes and each ei ≥ 1.

3.4 Remark (primality testing vs. factoring) The problem of deciding whether an integer is
composite or prime seems to be, in general, much easier than the factoring problem. Hence,
before attempting to factor an integer, the integer should be tested to make sure that it is
indeed composite. Primality tests are a main topic of Chapter 4.

3.5 Remark (splitting vs. factoring) A non-trivial factorization of n is a factorization of the
form n = ab where 1 < a < n and 1 < b < n; a and b are said to be non-trivial factors
of n. Here a and b are not necessarily prime. To solve the integer factorization problem, it
suffices to study algorithms that split n, that is, find a non-trivial factorizationn = ab. Once
found, the factorsa and b can be tested for primality. The algorithm for splitting integers can
then be recursively applied to a and/or b, if either is found to be composite. In this manner,
the prime factorization of n can be obtained.

3.6 Note (testing for perfect powers) If n ≥ 2, it can be efficiently checked as follows whether
or not n is a perfect power, i.e., n = xk for some integers x ≥ 2, k ≥ 2. For each prime
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90 Ch. 3 Number-Theoretic Reference Problems

p ≤ lg n, an integer approximationx of n1/p is computed. This can be done by performing
a binary search for x satisfying n = xp in the interval [2, 2blgn/pc+1]. The entire procedure
takes O((lg3 n) lg lg lg n) bit operations. For the remainder of this section, it will always
be assumed that n is not a perfect power. It follows that if n is composite, then n has at least
two distinct prime factors.

Some factoring algorithms are tailored to perform better when the integer n being fac-
tored is of a special form; these are called special-purpose factoring algorithms. The run-
ning times of such algorithms typically depend on certain properties of the factors of n. Ex-
amples of special-purpose factoring algorithms include trial division (§3.2.1), Pollard’s rho
algorithm (§3.2.2), Pollard’s p− 1 algorithm (§3.2.3), the elliptic curve algorithm (§3.2.4),
and the special number field sieve (§3.2.7). In contrast, the running times of the so-called
general-purpose factoring algorithms depend solely on the size of n. Examples of general-
purpose factoring algorithms include the quadratic sieve (§3.2.6) and the general number
field sieve (§3.2.7).

Whenever applicable, special-purpose algorithms should be employed as they will gen-
erally be more efficient. A reasonable overall strategy is to attempt to find small factors
first, capitalize on any particular special forms an integer may have, and then, if all else
fails, bring out the general-purpose algorithms. As an example of a general strategy, one
might consider the following.

1. Apply trial division by small primes less than some bound b1.
2. Next, apply Pollard’s rho algorithm, hoping to find any small prime factors smaller

than some bound b2, where b2 > b1.
3. Apply the elliptic curve factoring algorithm, hoping to find any small factors smaller

than some bound b3, where b3 > b2.
4. Finally, apply one of the more powerful general-purpose algorithms (quadratic sieve

or general number field sieve).

3.2.1 Trial division

Once it is established that an integern is composite, before expending vast amounts of time
with more powerful techniques, the first thing that should be attempted is trial division by
all “small” primes. Here, “small” is determined as a function of the size of n. As an extreme
case, trial division can be attempted by all primes up to

√
n. If this is done, trial division

will completely factor n but the procedure will take roughly
√
n divisions in the worst case

when n is a product of two primes of the same size. In general, if the factors found at each
stage are tested for primality, then trial division to factor n completely takes O(p + lgn)
divisions, where p is the second-largest prime factor of n.

Fact 3.7 indicates that if trial division is used to factor a randomly chosen large integer
n, then the algorithm can be expected to find some small factors of n relatively quickly, and
expend a large amount of time to find the second largest prime factor of n.

3.7 Fact Let n be chosen uniformly at random from the interval [1, x].

(i) If 12 ≤ α ≤ 1, then the probability that the largest prime factor of n is ≤ xα is
approximately 1+ lnα. Thus, for example, the probability that n has a prime factor
>
√
x is ln 2 ≈ 0.69.

(ii) The probability that the second-largest prime factor of n is ≤ x0.2117 is about 12 .
(iii) The expected total number of prime factors of n is ln lnx+O(1). (If n =

∏
peii , the

total number of prime factors of n is
∑
ei.)

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§3.2 The integer factorization problem 91

3.2.2 Pollard’s rho factoring algorithm

Pollard’s rho algorithm is a special-purpose factoring algorithm for finding small factors of
a composite integer.

Let f : S −→ S be a random function, where S is a finite set of cardinality n. Let
x0 be a random element of S, and consider the sequence x0, x1, x2, . . . defined by xi+1 =
f(xi) for i ≥ 0. Since S is finite, the sequence must eventually cycle, and consists of a
tail of expected length

√
πn/8 followed by an endlessly repeating cycle of expected length√

πn/8 (see Fact 2.37). A problem that arises in some cryptanalytic tasks, including integer
factorization (Algorithm 3.9) and the discrete logarithm problem (Algorithm 3.60), is of
finding distinct indices i and j such that xi = xj (a collision is then said to have occurred).

An obvious method for finding a collision is to compute and store xi for i = 0, 1, 2, . . .
and look for duplicates. The expected number of inputs that must be tried before a duplicate
is detected is

√
πn/2 (Fact 2.27). This method requiresO(

√
n)memory andO(

√
n) time,

assuming the xi are stored in a hash table so that new entries can be added in constant time.

3.8 Note (Floyd’s cycle-finding algorithm) The large storage requirements in the above tech-
nique for finding a collision can be eliminated by using Floyd’s cycle-finding algorithm.
In this method, one starts with the pair (x1, x2), and iteratively computes (xi, x2i) from
the previous pair (xi−1, x2i−2), until xm = x2m for some m. If the tail of the sequence
has length λ and the cycle has length µ, then the first time that xm = x2m is when m =
µ(1 + bλ/µc). Note that λ < m ≤ λ+ µ, and consequently the expected running time of
this method is O(

√
n).

Now, let p be a prime factor of a composite integer n. Pollard’s rho algorithm for fac-
toring n attempts to find duplicates in the sequence of integers x0, x1, x2, . . . defined by
x0 = 2, xi+1 = f(xi) = x2i + 1 mod p for i ≥ 0. Floyd’s cycle-finding algorithm is uti-
lized to find xm and x2m such that xm ≡ x2m (mod p). Since p dividesn but is unknown,
this is done by computing the terms xi modulo n and testing if gcd(xm − x2m, n) > 1.
If also gcd(xm − x2m, n) < n, then a non-trivial factor of n is obtained. (The situation
gcd(xm − x2m, n) = n occurs with negligible probability.)

3.9 Algorithm Pollard’s rho algorithm for factoring integers

INPUT: a composite integer n that is not a prime power.
OUTPUT: a non-trivial factor d of n.

1. Set a←2, b←2.
2. For i = 1, 2, . . . do the following:

2.1 Compute a←a2 + 1 mod n, b←b2 + 1 mod n, b←b2 + 1 mod n.
2.2 Compute d = gcd(a− b, n).
2.3 If 1 < d < n then return(d) and terminate with success.
2.4 If d = n then terminate the algorithm with failure (see Note 3.12).

3.10 Example (Pollard’s rho algorithm for finding a non-trivial factor of n = 455459) The
following table lists the values of variables a, b, and d at the end of each iteration of step 2
of Algorithm 3.9.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



92 Ch. 3 Number-Theoretic Reference Problems

a b d

5 26 1
26 2871 1
677 179685 1
2871 155260 1
44380 416250 1
179685 43670 1
121634 164403 1
155260 247944 1
44567 68343 743

Hence two non-trivial factors of 455459 are 743 and 455459/743 = 613. �

3.11 Fact Assuming that the function f(x) = x2 + 1 mod p behaves like a random function,
the expected time for Pollard’s rho algorithm to find a factor p of n isO(

√
p)modular mul-

tiplications. This implies that the expected time to find a non-trivial factor of n is O(n1/4)
modular multiplications.

3.12 Note (options upon termination with failure) If Pollard’s rho algorithm terminates with
failure, one option is to try again with a different polynomial f having integer coefficients
instead of f(x) = x2 + 1. For example, the polynomial f(x) = x2 + c may be used as
long as c 6= 0,−2.

3.2.3 Pollard’s p− 1 factoring algorithm

Pollard’s p−1 factoring algorithm is a special-purpose factoring algorithm that can be used
to efficiently find any prime factors p of a composite integer n for which p − 1 is smooth
(see Definition 3.13) with respect to some relatively small boundB.

3.13 Definition Let B be a positive integer. An integer n is said to be B-smooth, or smooth
with respect to a boundB, if all its prime factors are ≤ B.

The idea behind Pollard’s p − 1 algorithm is the following. Let B be a smoothness
bound. Let Q be the least common multiple of all powers of primes ≤ B that are ≤ n. If
ql ≤ n, then l ln q ≤ lnn, and so l ≤ b lnnln q c. Thus

Q =
∏
q≤B

qblnn/ ln qc,

where the product is over all distinct primes q ≤ B. If p is a prime factor of n such that p−1
is B-smooth, then p− 1|Q, and consequently for any a satisfying gcd(a, p) = 1, Fermat’s
theorem (Fact 2.127) implies that aQ ≡ 1 (mod p). Hence if d = gcd(aQ − 1, n), then
p|d. It is possible that d = n, in which case the algorithm fails; however, this is unlikely to
occur if n has at least two large distinct prime factors.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§3.2 The integer factorization problem 93

3.14 Algorithm Pollard’s p− 1 algorithm for factoring integers

INPUT: a composite integer n that is not a prime power.
OUTPUT: a non-trivial factor d of n.

1. Select a smoothness boundB.
2. Select a random integer a, 2 ≤ a ≤ n − 1, and compute d = gcd(a, n). If d ≥ 2

then return(d).
3. For each prime q ≤ B do the following:

3.1 Compute l = b lnnln q c.

3.2 Compute a←aq
l

mod n (using Algorithm 2.143).

4. Compute d = gcd(a− 1, n).
5. If d = 1 or d = n, then terminate the algorithm with failure. Otherwise, return(d).

3.15 Example (Pollard’s p− 1 algorithm for finding a non-trivial factor of n = 19048567)

1. Select the smoothness bound B = 19.
2. Select the integer a = 3 and compute gcd(3, n) = 1.
3. The following table lists the intermediate values of the variables q, l, and a after each

iteration of step 3 in Algorithm 3.14:

q l a

2 24 2293244
3 15 13555889
5 10 16937223
7 8 15214586
11 6 9685355
13 6 13271154
17 5 11406961
19 5 554506

4. Compute d = gcd(554506− 1, n) = 5281.
5. Two non-trivial factors of n are p = 5281 and q = n/p = 3607 (these factors are in

fact prime).

Notice that p− 1 = 5280 = 25 × 3× 5× 11, and q− 1 = 3606 = 2× 3× 601. That
is, p− 1 is 19-smooth, while q − 1 is not 19-smooth. �

3.16 Fact Let n be an integer having a prime factor p such that p − 1 is B-smooth. The run-
ning time of Pollard’s p− 1 algorithm for finding the factor p is O(B lnn/ lnB) modular
multiplications.

3.17 Note (improvements) The smoothness boundB in Algorithm 3.14 is selected based on the
amount of time one is willing to spend on Pollard’s p − 1 algorithm before moving on to
more general techniques. In practice, B may be between 105 and 106. If the algorithm
terminates with d = 1, then one might try searching over prime numbers q1, q2, . . . , ql
larger than B by first computing a←aqi mod n for 1 ≤ i ≤ l, and then computing d =
gcd(a − 1, n). Another variant is to start with a large bound B, and repeatedly execute
step 3 for a few primes q followed by the gcd computation in step 4. There are numerous
other practical improvements of the algorithm (see page 125).
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94 Ch. 3 Number-Theoretic Reference Problems

3.2.4 Elliptic curve factoring

The details of the elliptic curve factoring algorithm are beyond the scope of this book; nev-
ertheless, a rough outline follows. The success of Pollard’s p−1 algorithm hinges on p−1
being smooth for some prime divisor p of n; if no such p exists, then the algorithm fails.
Observe that p− 1 is the order of the group Z∗p. The elliptic curve factoring algorithm is a
generalization of Pollard’s p − 1 algorithm in the sense that the group Z∗p is replaced by a
random elliptic curve group over Zp. The order of such a group is roughly uniformly dis-
tributed in the interval [p+1−2

√
p, p+1+2

√
p]. If the order of the group chosen is smooth

with respect to some pre-selected bound, the elliptic curve algorithm will, with high prob-
ability, find a non-trivial factor of n. If the group order is not smooth, then the algorithm
will likely fail, but can be repeated with a different choice of elliptic curve group.

The elliptic curve algorithm has an expected running time of Lp[12 ,
√
2] (see Exam-

ple 2.61 for definition of Lp) to find a factor p of n. Since this running time depends on
the size of the prime factors of n, the algorithm tends to find small such factors first. The
elliptic curve algorithm is, therefore, classified as a special-purpose factoring algorithm. It
is currently the algorithm of choice for finding t-decimal digit prime factors, for t ≤ 40, of
very large composite integers.

In the hardest case, when n is a product of two primes of roughly the same size, the
expected running time of the elliptic curve algorithm is Ln[12 , 1], which is the same as that
of the quadratic sieve (§3.2.6). However, the elliptic curve algorithm is not as efficient as
the quadratic sieve in practice for such integers.

3.2.5 Random square factoring methods

The basic idea behind the random square family of methods is the following. Suppose x
and y are integers such that x2 ≡ y2 (mod n) but x 6≡ ±y (mod n). Then n divides
x2−y2 = (x−y)(x+y) butn does not divide either (x−y) or (x+y). Hence, gcd(x−y, n)
must be a non-trivial factor of n. This result is summarized next.

3.18 Fact Letx, y, andn be integers. Ifx2 ≡ y2 (mod n) butx 6≡ ±y (mod n), then gcd(x−
y, n) is a non-trivial factor of n.

The random square methods attempt to find integers x and y at random so that x2 ≡ y2

(mod n). Then, as shown in Fact 3.19, with probability at least 12 it is the case thatx 6≡ ±y
(mod n), whence gcd(x− y, n) will yield a non-trivial factor of n.

3.19 Fact Let n be an odd composite integer that is divisible by k distinct odd primes. If a ∈
Z
∗
n, then the congruence x2 ≡ a2 (mod n) has exactly 2k solutions modulo n, two of

which are x = a and x = −a.

3.20 Example Let n = 35. Then there are four solutions to the congruencex2 ≡ 4 (mod 35),
namely x = 2, 12, 23, and 33. �

A common strategy employed by the random square algorithms for finding x and y at
random satisfying x2 ≡ y2 (mod n) is the following. A set consisting of the first t primes
S = {p1, p2, . . . , pt} is chosen; S is called the factor base. Proceed to find pairs of integers
(ai, bi) satisfying

(i) a2i ≡ bi (mod n); and

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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(ii) bi =
∏t
j=1 p

eij
j , eij ≥ 0; that is, bi is pt-smooth.

Next find a subset of the bi’s whose product is a perfect square. Knowing the factoriza-
tions of the bi’s, this is possible by selecting a subset of the bi’s such that the power of
each prime pj appearing in their product is even. For this purpose, only the parity of the
non-negative integer exponents eij needs to be considered. Thus, to simplify matters, for
each i, associate the binary vector vi = (vi1, vi2, . . . , vit) with the integer exponent vector
(ei1, ei2, . . . , eit) such that vij = eij mod 2. If t + 1 pairs (ai, bi) are obtained, then the
t-dimensional vectors v1, v2, . . . , vt+1 must be linearly dependent over Z2. That is, there
must exist a non-empty subset T ⊆ {1, 2, . . . , t+ 1} such that

∑
i∈T vi = 0 over Z2, and

hence
∏
i∈T bi is a perfect square. The set T can be found using ordinary linear algebra over

Z2. Clearly,
∏
i∈T a

2
i is also a perfect square. Thus setting x =

∏
i∈T ai and y to be the

integer square root of
∏
i∈T bi yields a pair of integers (x, y) satisfying x2 ≡ y2 (mod n).

If this pair also satisfies x 6≡ ±y (mod n), then gcd(x − y, n) yields a non-trivial factor
of n. Otherwise, some of the (ai, bi) pairs may be replaced by some new such pairs, and
the process is repeated. In practice, there will be several dependencies among the vectors
v1, v2, . . . , vt+1, and with high probability at least one will yield an (x, y) pair satisfying
x 6≡ ±y (mod n); hence, this last step of generating new (ai, bi) pairs does not usually
occur.

This description of the random square methods is incomplete for two reasons. Firstly,
the optimal choice of t, the size of the factor base, is not specified; this is addressed in
Note 3.24. Secondly, a method for efficiently generating the pairs (ai, bi) is not specified.
Several techniques have been proposed. In the simplest of these, called Dixon’s algorithm,
ai is chosen at random, and bi = a2i mod n is computed. Next, trial division by elements
in the factor base is used to test whether bi is pt-smooth. If not, then another integer ai is
chosen at random, and the procedure is repeated.

The more efficient techniques strategically select an ai such that bi is relatively small.
Since the proportion of pt-smooth integers in the interval [2, x] becomes larger as x de-
creases, the probability of such bi being pt-smooth is higher. The most efficient of such
techniques is the quadratic sieve algorithm, which is described next.

3.2.6 Quadratic sieve factoring

Suppose an integern is to be factored. Letm = b
√
nc, and consider the polynomial q(x) =

(x+m)2 − n. Note that

q(x) = x2 + 2mx+m2 − n ≈ x2 + 2mx, (3.1)

which is small (relative to n) if x is small in absolute value. The quadratic sieve algorithm
selects ai = (x + m) and tests whether bi = (x + m)2 − n is pt-smooth. Note that
a2i = (x +m)

2 ≡ bi (mod n). Note also that if a prime p divides bi then (x+m)2 ≡ n
(mod p), and hence n is a quadratic residue modulo p. Thus the factor base need only

contain those primes p for which the Legendre symbol
(
n
p

)
is 1 (Definition 2.145). Further-

more, since bi may be negative,−1 is included in the factor base. The steps of the quadratic
sieve algorithm are summarized in Algorithm 3.21.
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3.21 Algorithm Quadratic sieve algorithm for factoring integers

INPUT: a composite integer n that is not a prime power.
OUTPUT: a non-trivial factor d of n.

1. Select the factor base S = {p1, p2, . . . , pt}, where p1 = −1 and pj (j ≥ 2) is the
(j − 1)th prime p for which n is a quadratic residue modulo p.

2. Computem = b
√
nc.

3. (Collect t+ 1 pairs (ai, bi). The x values are chosen in the order 0,±1,±2, . . . .)
Set i←1. While i ≤ t+ 1 do the following:

3.1 Compute b = q(x) = (x+m)2−n, and test using trial division (cf. Note 3.23)
by elements inS whether b is pt-smooth. If not, pick a newx and repeat step 3.1.

3.2 If b is pt-smooth, say b =
∏t
j=1 p

eij
j , then set ai←(x +m), bi←b, and vi =

(vi1, vi2, . . . , vit), where vij = eij mod 2 for 1 ≤ j ≤ t.
3.3 i←i+ 1.

4. Use linear algebra over Z2 to find a non-empty subset T ⊆ {1, 2, . . . , t + 1} such
that
∑
i∈T vi = 0.

5. Compute x =
∏
i∈T ai mod n.

6. For each j, 1 ≤ j ≤ t, compute lj = (
∑
i∈T eij)/2.

7. Compute y =
∏t
j=1 p

lj
j mod n.

8. If x ≡ ±y (mod n), then find another non-empty subset T ⊆ {1, 2, . . . , t+1} such
that
∑
i∈T vi = 0, and go to step 5. (In the unlikely case such a subset T does not

exist, replace a few of the (ai, bi) pairs with new pairs (step 3), and go to step 4.)
9. Compute d = gcd(x− y, n) and return(d).

3.22 Example (quadratic sieve algorithm for finding a non-trivial factor of n = 24961)

1. Select the factor base S = {−1, 2, 3, 5, 13, 23} of size t = 6. (7, 11, 17 and 19 are
omitted from S since

(
n
p

)
= −1 for these primes.)

2. Computem = b
√
24961c = 157.

3. Following is the data collected for the first t + 1 values of x for which q(x) is 23-
smooth.

i x q(x) factorization of q(x) ai vi

1 0 −312 −23 · 3 · 13 157 (1, 1, 1, 0, 1, 0)

2 1 3 3 158 (0, 0, 1, 0, 0, 0)

3 −1 −625 −54 156 (1, 0, 0, 0, 0, 0)

4 2 320 26 · 5 159 (0, 0, 0, 1, 0, 0)

5 −2 −936 −23 · 32 · 13 155 (1, 1, 0, 0, 1, 0)

6 4 960 26 · 3 · 5 161 (0, 0, 1, 1, 0, 0)

7 −6 −2160 −24 · 33 · 5 151 (1, 0, 1, 1, 0, 0)

4. By inspection, v1+ v2+ v5 = 0. (In the notation of Algorithm 3.21, T = {1, 2, 5}.)
5. Compute x = (a1a2a5 mod n) = 936.
6. Compute l1 = 1, l2 = 3, l3 = 2, l4 = 0, l5 = 1, l6 = 0.
7. Compute y = −23 · 32 · 13 mod n = 24025.
8. Since 936 ≡ −24025 (mod n), another linear dependency must be found.
9. By inspection, v3 + v6 + v7 = 0; thus T = {3, 6, 7}.

10. Compute x = (a3a6a7 mod n) = 23405.
11. Compute l1 = 1, l2 = 5, l3 = 2, l4 = 3, l5 = 0, l6 = 0.
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12. Compute y = (−25 · 32 · 53 mod n) = 13922.
13. Now, 23405 6≡ ±13922 (mod n), so computegcd(x−y, n) = gcd(9483, 24961) =
109. Hence, two non-trivial factors of 24961 are 109 and 229. �

3.23 Note (sieving) Instead of testing smoothness by trial division in step 3.1 of Algorithm 3.21,
a more efficient technique known as sieving is employed in practice. Observe first that if p
is an odd prime in the factor base and p divides q(x), then p also divides q(x+ lp) for every
integer l. Thus by solving the equation q(x) ≡ 0 (mod p) for x (for example, using the
algorithms in §3.5.1), one knows either one or two (depending on the number of solutions
to the quadratic equation) entire sequences of other values y for which p divides q(y).

The sieving process is the following. An array Q[ ] indexed by x, −M ≤ x ≤ M , is
created and the xth entry is initialized to blg |q(x)|c. Let x1, x2 be the solutions to q(x) ≡ 0
(mod p), where p is an odd prime in the factor base. Then the value blg pc is subtracted

from those entriesQ[x] in the array for which x ≡ x1 or x2 (mod p) and−M ≤ x ≤M .
This is repeated for each odd prime p in the factor base. (The case of p = 2 and prime
powers can be handled in a similar manner.) After the sieving, the array entries Q[x] with
values near 0 are most likely to be pt-smooth (roundoff errors must be taken into account),
and this can be verified by factoring q(x) by trial division.

3.24 Note (running time of the quadratic sieve) To optimize the running time of the quadratic
sieve, the size of the factor base should be judiciously chosen. The optimal selection of
t ≈ Ln[

1
2 ,
1
2 ] (see Example 2.61) is derived from knowledge concerning the distribution

of smooth integers close to
√
n. With this choice, Algorithm 3.21 with sieving (Note 3.23)

has an expected running time of Ln[12 , 1], independent of the size of the factors of n.

3.25 Note (multiple polynomial variant) In order to collect a sufficient number of (ai, bi) pairs,
the sieving interval must be quite large. From equation (3.1) it can be seen that |q(x)| in-
creases linearly with |x|, and consequently the probability of smoothness decreases. To
overcome this problem, a variant (the multiple polynomial quadratic sieve) was proposed
whereby many appropriately-chosenquadratic polynomials can be used instead of just q(x),
each polynomial being sieved over an interval of much smaller length. This variant also has
an expected running time of Ln[12 , 1], and is the method of choice in practice.

3.26 Note (parallelizing the quadratic sieve) The multiple polynomial variant of the quadratic
sieve is well suited for parallelization. Each node of a parallel computer, or each computer
in a network of computers, simply sieves through different collections of polynomials. Any
(ai, bi) pair found is reported to a central processor. Once sufficient pairs have been col-
lected, the corresponding system of linear equations is solved on a single (possibly parallel)
computer.

3.27 Note (quadratic sieve vs. elliptic curve factoring) The elliptic curve factoring algorithm
(§3.2.4) has the same4 expected (asymptotic) running time as the quadratic sieve factoring
algorithm in the special case when n is the product of two primes of equal size. However,
for such numbers, the quadratic sieve is superior in practice because the main steps in the
algorithm are single precision operations, compared to the much more computationally in-
tensive multi-precision elliptic curve operations required in the elliptic curve algorithm.

4This does not take into account the different o(1) terms in the two expressions Ln[ 12 , 1].
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3.2.7 Number field sieve factoring

For several years it was believed by some people that a running time of Ln[12 , 1] was, in
fact, the best achievable by any integer factorization algorithm. This barrier was broken in
1990 with the discovery of the number field sieve. Like the quadratic sieve, the number field
sieve is an algorithm in the random square family of methods (§3.2.5). That is, it attempts
to find integers x and y such that x2 ≡ y2 (mod n) and x 6≡ ±y (mod n). To achieve this
goal, two factor bases are used, one consisting of all prime numbers less than some bound,
and the other consisting of all prime ideals of norm less than some bound in the ring of
integers of a suitably-chosen algebraic number field. The details of the algorithm are quite
complicated, and are beyond the scope of this book.

A special version of the algorithm (the special number field sieve) applies to integers
of the form n = re − s for small r and |s|, and has an expected running time of Ln[13 , c],
where c = (32/9)1/3 ≈ 1.526.

The general version of the algorithm, sometimes called the general number field sieve,
applies to all integers and has an expected running time ofLn[13 , c], where c = (64/9)1/3 ≈
1.923. This is, asymptotically, the fastest algorithm known for integer factorization. The
primary reason why the running time of the number field sieve is smaller than that of the
quadratic sieve is that the candidate smooth numbers in the former are much smaller than
those in the latter.

The general number field sieve was at first believed to be slower than the quadratic
sieve for factoring integers having fewer than 150 decimal digits. However, experiments
in 1994–1996 have indicated that the general number field sieve is substantially faster than
the quadratic sieve even for numbers in the 115 digit range. This implies that the crossover
point between the effectiveness of the quadratic sieve vs. the general number field sieve
may be 110–120 digits. For this reason, the general number field sieve is considered the
current champion of all general-purpose factoring algorithms.

3.3 The RSA problem

The intractability of the RSA problem forms the basis for the security of the RSA public-key
encryption scheme (§8.2) and the RSA signature scheme (§11.3.1).

3.28 Definition The RSA problem (RSAP) is the following: given a positive integer n that is a
product of two distinct odd primes p and q, a positive integer e such that gcd(e, (p−1)(q−
1)) = 1, and an integer c, find an integerm such thatme ≡ c (mod n).

In other words, the RSA problem is that of finding eth roots modulo a composite integer
n. The conditions imposed on the problem parameters n and e ensure that for each integer
c ∈ {0, 1, . . . , n − 1} there is exactly one m ∈ {0, 1, . . . , n − 1} such that me ≡ c
(mod n). Equivalently, the function f : Zn −→ Zn defined as f(m) = me mod n is a

permutation.

3.29 Remark (SQROOT vs. RSA problems) Since p − 1 is even, it follows that e is odd. In
particular, e 6= 2, and hence the SQROOT problem (Definition 3.43) is not a special case
of the RSA problem.
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As is shown in §8.2.2(i), if the factors of n are known then the RSA problem can be
easily solved. This fact is stated next.

3.30 Fact RSAP ≤P FACTORING. That is, the RSA problem polytime reduces to the integer
factorization problem.

It is widely believed that the RSA and the integer factorization problems are computa-
tionally equivalent, although no proof of this is known.

3.4 The quadratic residuosity problem

The security of the Goldwasser-Micali probabilistic public-key encryption scheme (§8.7)
and the Blum-Blum-Shub pseudorandom bit generator (§5.5.2) are both based on the ap-
parent intractability of the quadratic residuosity problem.

Recall from §2.4.5 that if n ≥ 3 is an odd integer, then Jn is the set of all a ∈ Z∗n
having Jacobi symbol 1. Recall also that Qn is the set of quadratic residues modulo n and
that the set of pseudosquares modulo n is defined by Q̃n = Jn −Qn.

3.31 Definition The quadratic residuosity problem (QRP) is the following: given an odd com-
posite integer n and a ∈ Jn, decide whether or not a is a quadratic residue modulo n.

3.32 Remark (QRP with a prime modulus) If n is a prime, then it is easy to decide whether
a ∈ Z∗n is a quadratic residue modulo n since, by definition, a ∈ Qn if and only if

(
a
n

)
= 1,

and the Legendre symbol
(
a
n

)
can be efficiently calculated by Algorithm 2.149.

Assume now that n is a product of two distinct odd primes p and q. It follows from
Fact 2.137 that if a ∈ Jn, then a ∈ Qn if and only if

(
a
p

)
= 1. Thus, if the factorization of

n is known, then QRP can be solved simply by computing the Legendre symbol
(
a
p

)
. This

observation can be generalized to all integers n and leads to the following fact.

3.33 Fact QRP ≤P FACTORING. That is, the QRP polytime reduces to the FACTORING
problem.

On the other hand, if the factorization of n is unknown, then there is no efficient pro-
cedure known for solving QRP, other than by guessing the answer. If n = pq, then the
probability of a correct guess is 12 since |Qn| = |Q̃n| (Fact 2.155). It is believed that the
QRP is as difficult as the problem of factoring integers, although no proof of this is known.

3.5 Computing square roots in Zn

The operations of squaring modulo an integer n and extracting square roots modulo an in-
teger n are frequently used in cryptographic functions. The operation of computing square
roots modulo n can be performed efficiently when n is a prime, but is difficult when n is a
composite integer whose prime factors are unknown.
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3.5.1 Case (i): n prime

Recall from Remark 3.32 that if p is a prime, then it is easy to decide if a ∈ Z∗p is a quadratic
residue modulo p. If a is, in fact, a quadratic residue modulo p, then the two square roots
of a can be efficiently computed, as demonstrated by Algorithm 3.34.

3.34 Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and an integer a, 1 ≤ a ≤ p− 1.
OUTPUT: the two square roots of a modulo p, provided a is a quadratic residue modulo p.

1. Compute the Legendre symbol
(
a
p

)
using Algorithm 2.149. If

(
a
p

)
= −1 then return(a

does not have a square root modulo p) and terminate.
2. Select integers b, 1 ≤ b ≤ p− 1, at random until one is found with

(
b
p

)
= −1. (b is

a quadratic non-residue modulo p.)
3. By repeated division by 2, write p− 1 = 2st, where t is odd.
4. Compute a−1 mod p by the extended Euclidean algorithm (Algorithm 2.142).
5. Set c←bt mod p and r←a(t+1)/2 mod p (Algorithm 2.143).
6. For i from 1 to s− 1 do the following:

6.1 Compute d = (r2 · a−1)2
s−i−1

mod p.
6.2 If d ≡ −1 (mod p) then set r←r · c mod p.
6.3 Set c←c2 mod p.

7. Return(r, −r).

Algorithm 3.34 is a randomized algorithm because of the manner in which the quadratic
non-residue b is selected in step 2. No deterministic polynomial-time algorithm for finding
a quadratic non-residue modulo a prime p is known (see Remark 2.151).

3.35 Fact Algorithm 3.34 has an expected running time of O((lg p)4) bit operations.

This running time is obtained by observing that the dominant step (step 6) is executed
s−1 times, each iteration involving a modular exponentiation and thus takingO((lg p)3) bit
operations (Table 2.5). Since in the worst case s = O(lg p), the running time ofO((lg p)4)
follows. When s is small, the loop in step 6 is executed only a small number of times, and
the running time of Algorithm 3.34 isO((lg p)3) bit operations. This point is demonstrated
next for the special cases s = 1 and s = 2.

Specializing Algorithm 3.34 to the case s = 1 yields the following simple deterministic
algorithm for finding square roots when p ≡ 3 (mod 4).

3.36 Algorithm Finding square roots modulo a prime p where p ≡ 3 (mod 4)

INPUT: an odd prime p where p ≡ 3 (mod 4), and a square a ∈ Qp.
OUTPUT: the two square roots of a modulo p.

1. Compute r = a(p+1)/4 mod p (Algorithm 2.143).
2. Return(r, −r).

Specializing Algorithm 3.34 to the case s = 2, and using the fact that 2 is a quadratic
non-residue modulo p when p ≡ 5 (mod 8), yields the following simple deterministic al-
gorithm for finding square roots when p ≡ 5 (mod 8).
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3.37 Algorithm Finding square roots modulo a prime p where p ≡ 5 (mod 8)

INPUT: an odd prime p where p ≡ 5 (mod 8), and a square a ∈ Qp.
OUTPUT: the two square roots of a modulo p.

1. Compute d = a(p−1)/4 mod p (Algorithm 2.143).
2. If d = 1 then compute r = a(p+3)/8 mod p.
3. If d = p− 1 then compute r = 2a(4a)(p−5)/8 mod p.
4. Return(r, −r).

3.38 Fact Algorithms 3.36 and 3.37 have running times of O((lg p)3) bit operations.

Algorithm 3.39 for finding square roots modulo p is preferable to Algorithm 3.34 when
p− 1 = 2st with s large.

3.39 Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and a square a ∈ Qp.
OUTPUT: the two square roots of a modulo p.

1. Choose random b ∈ Zp until b2 − 4a is a quadratic non-residue modulo p, i.e.,(
b2−4a
p

)
= −1.

2. Let f be the polynomial x2 − bx+ a in Zp[x].
3. Compute r = x(p+1)/2 mod f using Algorithm 2.227. (Note: r will be an integer.)
4. Return(r, −r).

3.40 Fact Algorithm 3.39 has an expected running time of O((lg p)3) bit operations.

3.41 Note (computing square roots in a finite field) Algorithms 3.34, 3.36, 3.37, and 3.39 can be
extended in a straightforward manner to find square roots in any finite field Fq of odd order
q = pm, p prime,m ≥ 1. Square roots in finite fields of even order can also be computed
efficiently via Fact 3.42.

3.42 Fact Each element a ∈ F2m has exactly one square root, namely a2
m−1

.

3.5.2 Case (ii): n composite

The discussion in this subsection is restricted to the case of computing square roots modulo
n, where n is a product of two distinct odd primes p and q. However, all facts presented
here generalize to the case where n is an arbitrary composite integer.

Unlike the case where n is a prime, the problem of deciding whether a given a ∈ Z∗n
is a quadratic residue modulo a composite integer n, is believed to be a difficult problem.
Certainly, if the Jacobi symbol

(
a
n

)
= −1, then a is a quadratic non-residue. On the other

hand, if
(
a
n

)
= 1, then deciding whether or not a is a quadratic residue is precisely the

quadratic residuosity problem, considered in §3.4.

3.43 Definition The square root modulo n problem (SQROOT) is the following: given a com-
posite integer n and a quadratic residue a modulo n (i.e. a ∈ Qn), find a square root of a
modulo n.
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If the factors p and q of n are known, then the SQROOT problem can be solved effi-
ciently by first finding square roots of amodulo p and modulo q, and then combining them
using the Chinese remainder theorem (Fact 2.120) to obtain the square roots of a modulo
n. The steps are summarized in Algorithm 3.44, which, in fact, finds all of the four square
roots of a modulo n.

3.44 Algorithm Finding square roots modulo n given its prime factors p and q

INPUT: an integer n, its prime factors p and q, and a ∈ Qn.
OUTPUT: the four square roots of a modulo n.

1. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
roots r and−r of a modulo p.

2. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
roots s and−s of a modulo q.

3. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers c and d such
that cp+ dq = 1.

4. Set x←(rdq + scp) mod n and y←(rdq − scp) mod n.
5. Return(±x mod n, ±y mod n).

3.45 Fact Algorithm 3.44 has an expected running time of O((lg p)3) bit operations.

Algorithm 3.44 shows that if one can factor n, then the SQROOT problem is easy.
More precisely, SQROOT ≤P FACTORING. The converse of this statement is also true,
as stated in Fact 3.46.

3.46 Fact FACTORING ≤P SQROOT. That is, the FACTORING problem polytime reduces
to the SQROOT problem. Hence, since SQROOT ≤P FACTORING, the FACTORING
and SQROOT problems are computationally equivalent.

Justification. Suppose that one has a polynomial-time algorithm A for solving the SQ-
ROOT problem. This algorithm can then be used to factor a given composite integer n as
follows. Select an integer x at random with gcd(x, n) = 1, and compute a = x2 mod n.
Next, algorithmA is run with inputs a and n, and a square root y of amodulo n is returned.
If y ≡ ±x (mod n), then the trial fails, and the above procedure is repeated with a new
x chosen at random. Otherwise, if y 6≡ ±x (mod n), then gcd(x− y, n) is guaranteed to
be a non-trivial factor of n (Fact 3.18), namely, p or q. Since a has four square roots mod-
ulo n (±x and ±z with ±z 6≡ ±x (mod n)), the probability of success for each attempt
is 12 . Hence, the expected number of attempts before a factor of n is obtained is two, and
consequently the procedure runs in expected polynomial time. �

3.47 Note (strengthening of Fact 3.46) The proof of Fact 3.46 can be easily modified to estab-
lish the following stronger result. Let c ≥ 1 be any constant. If there is an algorithm A
which, given n, can find a square root modulo n in polynomial time for a 1

(lgn)c fraction
of all quadratic residues a ∈ Qn, then the algorithm A can be used to factor n in expected
polynomial time. The implication of this statement is that if the problem of factoring n is
difficult, then for almost all a ∈ Qn it is difficult to find square roots modulo n.

The computational equivalence of the SQROOT and FACTORING problems was the
basis of the first “provably secure” public-key encryption and signature schemes, presented
in §8.3.
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3.6 The discrete logarithm problem

The security of many cryptographic techniques depends on the intractability of the discrete
logarithm problem. A partial list of these includes Diffie-Hellman key agreement and its
derivatives (§12.6), ElGamal encryption (§8.4), and the ElGamal signature scheme and its
variants (§11.5). This section summarizes the current knowledge regarding algorithms for
solving the discrete logarithm problem.

Unless otherwise specified, algorithms in this section are described in the general set-
ting of a (multiplicatively written) finite cyclic group G of order n with generator α (see
Definition 2.167). For a more concrete approach, the reader may find it convenient to think
of G as the multiplicative group Z∗p of order p − 1, where the group operation is simply
multiplication modulo p.

3.48 Definition Let G be a finite cyclic group of order n. Let α be a generator of G, and let
β ∈ G. The discrete logarithm of β to the base α, denoted logα β, is the unique integer x,
0 ≤ x ≤ n− 1, such that β = αx.

3.49 Example Let p = 97. Then Z∗97 is a cyclic group of order n = 96. A generator of Z∗97 is
α = 5. Since 532 ≡ 35 (mod 97), log5 35 = 32 in Z∗97. �
The following are some elementary facts about logarithms.

3.50 Fact Let α be a generator of a cyclic group G of order n, and let β, γ ∈ G. Let s be an
integer. Then logα(βγ) = (logα β + logα γ) mod n and logα(β

s) = s logα β mod n.

The groups of most interest in cryptography are the multiplicative groupF∗q of the finite
field Fq (§2.6), including the particular cases of the multiplicative group Z∗p of the integers
modulo a prime p, and the multiplicative group F∗2m of the finite field F2m of characteristic
two. Also of interest are the group of units Z∗n where n is a composite integer, the group
of points on an elliptic curve defined over a finite field, and the jacobian of a hyperelliptic
curve defined over a finite field.

3.51 Definition The discrete logarithm problem (DLP) is the following: given a prime p, a
generator α of Z∗p, and an element β ∈ Z∗p, find the integer x, 0 ≤ x ≤ p − 2, such that
αx ≡ β (mod p).

3.52 Definition The generalized discrete logarithm problem (GDLP) is the following: given a
finite cyclic groupG of order n, a generator α ofG, and an element β ∈ G, find the integer
x, 0 ≤ x ≤ n− 1, such that αx = β.

The discrete logarithm problem in elliptic curve groups and in the jacobians of hyper-
elliptic curves are not explicitly considered in this section. The discrete logarithm problem
in Z∗n is discussed further in §3.8.

3.53 Note (difficulty of the GDLP is independent of generator) Let α and γ be two generators
of a cyclic groupG of order n, and let β ∈ G. Let x = logα β, y = logγ β, and z = logα γ.
Then αx = β = γy = (αz)y. Consequently x = zy mod n, and

logγ β = (logα β) (logα γ)
−1 mod n.

This means that any algorithm which computes logarithms to the base α can be used to
compute logarithms to any other base γ that is also a generator of G.
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3.54 Note (generalization of GDLP) A more general formulation of the GDLP is the following:
given a finite groupG and elementsα, β ∈ G, find an integer x such that αx = β, provided
that such an integer exists. In this formulation, it is not required that G be a cyclic group,
and, even if it is, it is not required thatα be a generator ofG. This problem may be harder to
solve, in general, than GDLP. However, in the case whereG is a cyclic group (for example
ifG is the multiplicative group of a finite field) and the order of α is known, it can be easily
recognized whether an integer x satisfying αx = β exists. This is because of the following
fact: if G is a cyclic group, α is an element of order n in G, and β ∈ G, then there exists
an integer x such that αx = β if and only if βn = 1.

3.55 Note (solving the DLP in a cyclic groupG of order n is in essence computing an isomor-
phism between G and Zn) Even though any two cyclic groups of the same order are iso-
morphic (that is, they have the same structure although the elements may be written in dif-
ferent representations), an efficient algorithm for computing logarithms in one group does
not necessarily imply an efficient algorithm for the other group. To see this, consider that
every cyclic group of order n is isomorphic to the additive cyclic group Zn, i.e., the set of
integers {0, 1, 2, . . . , n − 1} where the group operation is addition modulo n. Moreover,
the discrete logarithm problem in the latter group, namely, the problem of finding an inte-
ger x such that ax ≡ b (mod n) given a, b ∈ Zn, is easy as shown in the following. First
note that there does not exist a solution x if d = gcd(a, n) does not divide b (Fact 2.119).
Otherwise, if d divides b, the extended Euclidean algorithm (Algorithm 2.107) can be used
to find integers s and t such that as + nt = d. Multiplying both sides of this equation by
the integer b/d gives a(sb/d) + n(tb/d) = b. Reducing this equation modulo n yields
a(sb/d) ≡ b (mod n) and hence x = (sb/d) mod n is the desired (and easily obtainable)
solution.

The known algorithms for the DLP can be categorized as follows:

1. algorithms which work in arbitrary groups, e.g., exhaustive search (§3.6.1), the baby-
step giant-step algorithm (§3.6.2), Pollard’s rho algorithm (§3.6.3);

2. algorithms which work in arbitrary groups but are especially efficient if the order of
the group has only small prime factors, e.g., Pohlig-Hellman algorithm (§3.6.4); and

3. the index-calculus algorithms (§3.6.5) which are efficient only in certain groups.

3.6.1 Exhaustive search

The most obvious algorithm for GDLP (Definition 3.52) is to successively computeα0, α1,
α2, . . . until β is obtained. This method takes O(n) multiplications, where n is the order
of α, and is therefore inefficient if n is large (i.e. in cases of cryptographic interest).

3.6.2 Baby-step giant-step algorithm

Let m = d
√
ne, where n is the order of α. The baby-step giant-step algorithm is a time-

memory trade-off of the method of exhaustive search and is based on the following observa-
tion. If β = αx, then one can write x = im+j, where 0 ≤ i, j < m. Hence, αx = αimαj ,
which implies β(α−m)i = αj . This suggests the following algorithm for computing x.
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3.56 Algorithm Baby-step giant-step algorithm for computing discrete logarithms

INPUT: a generator α of a cyclic groupG of order n, and an element β ∈ G.
OUTPUT: the discrete logarithm x = logα β.

1. Setm←d
√
ne.

2. Construct a table with entries (j, αj) for 0 ≤ j < m. Sort this table by second
component. (Alternatively, use conventional hashing on the second component to
store the entries in a hash table; placing an entry, and searching for an entry in the
table takes constant time.)

3. Compute α−m and set γ←β.
4. For i from 0 tom− 1 do the following:

4.1 Check if γ is the second component of some entry in the table.
4.2 If γ = αj then return(x = im+ j).
4.3 Set γ←γ · α−m.

Algorithm 3.56 requires storage for O(
√
n) group elements. The table takes O(

√
n)

multiplications to construct, and O(
√
n lg n) comparisons to sort. Having constructed this

table, step 4 takes O(
√
n) multiplications and O(

√
n) table look-ups. Under the assump-

tion that a group multiplication takes more time than lgn comparisons, the running time of
Algorithm 3.56 can be stated more concisely as follows.

3.57 Fact The running time of the baby-step giant-step algorithm (Algorithm 3.56) is O(
√
n)

group multiplications.

3.58 Example (baby-step giant-step algorithm for logarithms in Z∗113) Let p = 113. The ele-
ment α = 3 is a generator of Z∗113 of order n = 112. Consider β = 57. Then log3 57 is
computed as follows.

1. Setm←d
√
112e = 11.

2. Construct a table whose entries are (j, αj mod p) for 0 ≤ j < 11:

j 0 1 2 3 4 5 6 7 8 9 10

3j mod 113 1 3 9 27 81 17 51 40 7 21 63

and sort the table by second component:
j 0 1 8 2 5 9 3 7 6 10 4

3j mod 113 1 3 7 9 17 21 27 40 51 63 81

3. Using Algorithm 2.142, compute α−1 = 3−1 mod 113 = 38 and then compute
α−m = 3811 mod 113 = 58.

4. Next, γ = βα−mi mod 113 for i = 0, 1, 2, . . . is computed until a value in the
second row of the table is obtained. This yields:

i 0 1 2 3 4 5 6 7 8 9

γ = 57 · 58i mod 113 57 29 100 37 112 55 26 39 2 3

Finally, since βα−9m = 3 = α1, β = α100 and, therefore, log3 57 = 100. �

3.59 Note (restricted exponents) In order to improve performance, some cryptographic proto-
cols which use exponentiation in Z∗p select exponents of a special form, e.g. having small
Hamming weight. (The Hamming weight of an integer is the number of ones in its binary
representation.) Suppose that p is a k-bit prime, and only exponents of Hamming weight t
are used. The number of such exponents is

(
k
t

)
. Algorithm 3.56 can be modified to search

the exponent space in roughly
(
k
t/2

)
steps. The algorithm also applies to exponents that are

restricted in certain other ways, and extends to all finite groups.
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3.6.3 Pollard’s rho algorithm for logarithms

Pollard’s rho algorithm (Algorithm 3.60) for computing discrete logarithms is a randomized
algorithm with the same expected running time as the baby-step giant-step algorithm (Al-
gorithm 3.56), but which requires a negligible amount of storage. For this reason, it is far
preferable to Algorithm 3.56 for problems of practical interest. For simplicity, it is assumed
in this subsection that G is a cyclic group whose order n is prime.

The group G is partitioned into three sets S1, S2, and S3 of roughly equal size based
on some easily testable property. Some care must be exercised in selecting the partition; for
example, 1 6∈ S2. Define a sequence of group elements x0, x1, x2, . . . by x0 = 1 and

xi+1 = f(xi)
def
=



β · xi, if xi ∈ S1,
x2i , if xi ∈ S2,
α · xi, if xi ∈ S3,

(3.2)

for i ≥ 0. This sequence of group elements in turn defines two sequences of integers
a0, a1, a2, . . . and b0, b1, b2, . . . satisfying xi = αaiβbi for i ≥ 0: a0 = 0, b0 = 0, and for
i ≥ 0,

ai+1 =



ai, if xi ∈ S1,
2ai mod n, if xi ∈ S2,
ai + 1 mod n, if xi ∈ S3,

(3.3)

and

bi+1 =



bi + 1 mod n, if xi ∈ S1,
2bi mod n, if xi ∈ S2,
bi, if xi ∈ S3.

(3.4)

Floyd’s cycle-finding algorithm (Note 3.8) can then be utilized to find two group elements
xi and x2i such that xi = x2i. Hence αaiβbi = αa2iβb2i , and so βbi−b2i = αa2i−ai .
Taking logarithms to the base α of both sides of this last equation yields

(bi − b2i) · logα β ≡ (a2i − ai) (mod n).

Provided bi 6≡ b2i (mod n) (note: bi ≡ b2i occurs with negligible probability), this equa-
tion can then be efficiently solved to determine logα β.

3.60 Algorithm Pollard’s rho algorithm for computing discrete logarithms

INPUT: a generator α of a cyclic groupG of prime order n, and an element β ∈ G.
OUTPUT: the discrete logarithm x = logα β.

1. Set x0←1, a0←0, b0←0.
2. For i = 1, 2, . . . do the following:

2.1 Using the quantities xi−1, ai−1, bi−1, and x2i−2, a2i−2, b2i−2 computed previ-
ously, compute xi, ai, bi and x2i, a2i, b2i using equations (3.2), (3.3), and (3.4).

2.2 If xi = x2i, then do the following:

Set r←bi − b2i mod n.
If r = 0 then terminate the algorithm with failure; otherwise, compute
x = r−1(a2i − ai) mod n and return(x).

In the rare case that Algorithm 3.60 terminates with failure, the procedure can be re-
peated by selecting random integers a0, b0 in the interval [1, n− 1], and starting with x0 =
αa0βb0 . Example 3.61 with artificially small parameters illustrates Pollard’s rho algorithm.
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3.61 Example (Pollard’s rho algorithm for logarithms in a subgroup ofZ∗383) The elementα =
2 is a generator of the subgroupG of Z∗383 of order n = 191. Suppose β = 228. Partition
the elements ofG into three subsets according to the rule x ∈ S1 if x ≡ 1 (mod 3), x ∈ S2
if x ≡ 0 (mod 3), and x ∈ S3 if x ≡ 2 (mod 3). Table 3.2 shows the values of xi, ai, bi,
x2i, a2i, and b2i at the end of each iteration of step 2 of Algorithm 3.60. Note that x14 =
x28 = 144. Finally, compute r = b14 − b28 mod 191 = 125, r−1 = 125−1 mod 191 =
136, and r−1(a28 − a14) mod 191 = 110. Hence, log2 228 = 110. �

i xi ai bi x2i a2i b2i

1 228 0 1 279 0 2
2 279 0 2 184 1 4
3 92 0 4 14 1 6
4 184 1 4 256 2 7
5 205 1 5 304 3 8
6 14 1 6 121 6 18
7 28 2 6 144 12 38
8 256 2 7 235 48 152
9 152 2 8 72 48 154
10 304 3 8 14 96 118
11 372 3 9 256 97 119
12 121 6 18 304 98 120
13 12 6 19 121 5 51
14 144 12 38 144 10 104

Table 3.2: Intermediate steps of Pollard’s rho algorithm in Example 3.61.

3.62 Fact Let G be a group of order n, a prime. Assume that the function f : G −→ G de-
fined by equation (3.2) behaves like a random function. Then the expected running time of
Pollard’s rho algorithm for discrete logarithms inG isO(

√
n) group operations. Moreover,

the algorithm requires negligible storage.

3.6.4 Pohlig-Hellman algorithm

Algorithm 3.63 for computing logarithms takes advantage of the factorization of the ordern
of the groupG. Let n = pe11 p

e2
2 · · · p

er
r be the prime factorization of n. If x = logα β, then

the approach is to determinexi = x mod p
ei
i for 1 ≤ i ≤ r, and then use Gauss’s algorithm

(Algorithm 2.121) to recover x mod n. Each integer xi is determined by computing the
digits l0, l1, . . . , lei−1 in turn of its pi-ary representation: xi = l0+l1pi+ · · ·+lei−1p

ei−1
i ,

where 0 ≤ lj ≤ pi − 1.
To see that the output of Algorithm 3.63 is correct, observe first that in step 2.3 the

order of α is q. Next, at iteration j of step 2.4, γ = αl0+l1q+···+lj−1q
j−1

. Hence,

β = (β/γ)n/q
j+1

= (αx−l0−l1q−···−lj−1q
j−1

)n/q
j+1

= (αn/q
j+1

)xi−l0−l1q−···−lj−1q
j−1

= (αn/q
j+1

)ljq
j+···+le−1q

e−1

= (αn/q)lj+···+le−1q
e−1−j

= (α)lj ,

the last equality being true because α has order q. Hence, logα β is indeed equal to lj .
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3.63 Algorithm Pohlig-Hellman algorithm for computing discrete logarithms

INPUT: a generator α of a cyclic groupG of order n, and an element β ∈ G.
OUTPUT: the discrete logarithm x = logα β.

1. Find the prime factorization of n: n = pe11 p
e2
2 · · · p

er
r , where ei ≥ 1.

2. For i from 1 to r do the following:
(Compute xi = l0 + l1pi + · · ·+ lei−1p

ei−1
i , where xi = x mod p

ei
i )

2.1 (Simplify the notation) Set q←pi and e←ei.
2.2 Set γ←1 and l−1←0.
2.3 Compute α←αn/q .
2.4 (Compute the lj) For j from 0 to e− 1 do the following:

Compute γ←γαlj−1q
j−1

and β←(βγ−1)n/q
j+1

.
Compute lj← logα β (e.g., using Algorithm 3.56; see Note 3.67(iii)).

2.5 Set xi←l0 + l1q + · · ·+ le−1qe−1.

3. Use Gauss’s algorithm (Algorithm 2.121) to compute the integer x, 0 ≤ x ≤ n− 1,
such that x ≡ xi (mod p

ei
i ) for 1 ≤ i ≤ r.

4. Return(x).

Example 3.64 illustrates Algorithm 3.63 with artificially small parameters.

3.64 Example (Pohlig-Hellman algorithm for logarithms in Z∗251) Let p = 251. The element
α = 71 is a generator of Z∗251 of order n = 250. Consider β = 210. Then x = log71 210
is computed as follows.

1. The prime factorization of n is 250 = 2 · 53.
2. (a) (Compute x1 = x mod 2)

Compute α = αn/2 mod p = 250 and β = βn/2 mod p = 250. Then x1 =
log250 250 = 1.

(b) (Compute x2 = x mod 53 = l0 + l15 + l252)

i. Compute α = αn/5 mod p = 20.
ii. Compute γ = 1 and β = (βγ−1)n/5 mod p = 149. Using exhaustive

search,5 compute l0 = log20 149 = 2.
iii. Compute γ = γα2 mod p = 21 and β = (βγ−1)n/25 mod p = 113.

Using exhaustive search, compute l1 = log20 113 = 4.
iv. Compute γ = γα4·5 mod p = 115 and β = (βγ−1)(p−1)/125 mod p =
149. Using exhaustive search, compute l2 = log20 149 = 2.

Hence, x2 = 2 + 4 · 5 + 2 · 52 = 72.
3. Finally, solve the pair of congruences x ≡ 1 (mod 2), x ≡ 72 (mod 125) to get
x = log71 210 = 197. �

3.65 Fact Given the factorization of n, the running time of the Pohlig-Hellman algorithm (Al-
gorithm 3.63) is O(

∑r
i=1 ei(lgn+

√
pi)) group multiplications.

3.66 Note (effectiveness of Pohlig-Hellman) Fact 3.65 implies that the Pohlig-Hellman algo-
rithm is efficient only if each prime divisor pi ofn is relatively small; that is, if n is a smooth

5Exhaustive search is preferable to Algorithm 3.56 when the group is very small (here the order of α is 5).
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integer (Definition 3.13). An example of a group in which the Pohlig-Hellman algorithm
is effective follows. Consider the multiplicative group Z∗p where p is the 107-digit prime:

p = 227088231986781039743145181950291021585250524967592855

96453269189798311427475159776411276642277139650833937.

The order of Z∗p is n = p− 1 = 24 · 1047298 · 2247378 · 3503774. Since the largest prime
divisor of p − 1 is only 350377, it is relatively easy to compute logarithms in this group
using the Pohlig-Hellman algorithm.

3.67 Note (miscellaneous)

(i) If n is a prime, then Algorithm 3.63 (Pohlig-Hellman) is the same as baby-step giant-
step (Algorithm 3.56).

(ii) In step 1 of Algorithm 3.63, a factoring algorithm which finds small factors first (e.g.,
Algorithm 3.9) should be employed; if the order n is not a smooth integer, then Al-
gorithm 3.63 is inefficient anyway.

(iii) The storage required for Algorithm 3.56 in step 2.4 can be eliminated by using instead
Pollard’s rho algorithm (Algorithm 3.60).

3.6.5 Index-calculus algorithm

The index-calculus algorithm is the most powerful method known for computing discrete
logarithms. The technique employed does not apply to all groups, but when it does, it of-
ten gives a subexponential-time algorithm. The algorithm is first described in the general
setting of a cyclic groupG (Algorithm 3.68). Two examples are then presented to illustrate
how the index-calculus algorithm works in two kinds of groups that are used in practical
applications, namely Z∗p (Example 3.69) and F∗2m (Example 3.70).

The index-calculus algorithm requires the selection of a relatively small subset S of
elements of G, called the factor base, in such a way that a significant fraction of elements
ofG can be efficiently expressed as products of elements from S. Algorithm 3.68 proceeds
to precompute a database containing the logarithms of all the elements in S, and then reuses
this database each time the logarithm of a particular group element is required.

The description of Algorithm 3.68 is incomplete for two reasons. Firstly, a technique
for selecting the factor baseS is not specified. Secondly, a method for efficiently generating
relations of the form (3.5) and (3.7) is not specified. The factor base S must be a subset of
G that is small (so that the system of equations to be solved in step 3 is not too large), but
not too small (so that the expected number of trials to generate a relation (3.5) or (3.7) is
not too large). Suitable factor bases and techniques for generating relations are known for
some cyclic groups includingZ∗p (see §3.6.5(i)) andF∗2m (see §3.6.5(ii)), and, moreover, the
multiplicative group F∗q of a general finite field Fq .

3.68 Algorithm Index-calculus algorithm for discrete logarithms in cyclic groups

INPUT: a generator α of a cyclic groupG of order n, and an element β ∈ G.
OUTPUT: the discrete logarithm y = logα β.

1. (Select a factor base S) Choose a subset S = {p1, p2, . . . , pt} ofG such that a “sig-
nificant proportion” of all elements in G can be efficiently expressed as a product of
elements from S.

2. (Collect linear relations involving logarithms of elements in S)
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2.1 Select a random integer k, 0 ≤ k ≤ n− 1, and compute αk.
2.2 Try to write αk as a product of elements in S:

αk =
t∏
i=1

pcii , ci ≥ 0. (3.5)

If successful, take logarithms of both sides of equation (3.5) to obtain a linear
relation

k ≡
t∑
i=1

ci logα pi (mod n). (3.6)

2.3 Repeat steps 2.1 and 2.2 until t + c relations of the form (3.6) are obtained (c
is a small positive integer, e.g. c = 10, such that the system of equations given
by the t+ c relations has a unique solution with high probability).

3. (Find the logarithms of elements in S) Working modulo n, solve the linear system
of t+ c equations (in t unknowns) of the form (3.6) collected in step 2 to obtain the
values of logα pi, 1 ≤ i ≤ t.

4. (Compute y)

4.1 Select a random integer k, 0 ≤ k ≤ n− 1, and compute β · αk.
4.2 Try to write β · αk as a product of elements in S:

β · αk =
t∏
i=1

pdii , di ≥ 0. (3.7)

If the attempt is unsuccessful then repeat step 4.1. Otherwise, taking logarithms
of both sides of equation (3.7) yields logα β = (

∑t
i=1 di logα pi − k) mod n;

thus, compute y = (
∑t
i=1 di logα pi − k) mod n and return(y).

(i) Index-calculus algorithm in Z∗p
For the field Zp, p a prime, the factor base S can be chosen as the first t prime numbers. A
relation (3.5) is generated by computing αk mod p and then using trial division to check
whether this integer is a product of primes in S. Example 3.69 illustrates Algorithm 3.68
in Z∗p on a problem with artificially small parameters.

3.69 Example (Algorithm 3.68 for logarithms in Z∗229) Let p = 229. The element α = 6 is
a generator of Z∗229 of order n = 228. Consider β = 13. Then log6 13 is computed as
follows, using the index-calculus technique.

1. The factor base is chosen to be the first 5 primes: S = {2, 3, 5, 7, 11}.
2. The following six relations involving elements of the factor base are obtained (un-

successful attempts are not shown):

6100 mod 229 = 180 = 22 · 32 · 5

618 mod 229 = 176 = 24 · 11

612 mod 229 = 165 = 3 · 5 · 11

662 mod 229 = 154 = 2 · 7 · 11

6143 mod 229 = 198 = 2 · 32 · 11

6206 mod 229 = 210 = 2 · 3 · 5 · 7.
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These relations yield the following six equations involving the logarithms of ele-
ments in the factor base:

100 ≡ 2 log6 2 + 2 log6 3 + log6 5 (mod 228)

18 ≡ 4 log6 2 + log6 11 (mod 228)

12 ≡ log6 3 + log6 5 + log6 11 (mod 228)

62 ≡ log6 2 + log6 7 + log6 11 (mod 228)

143 ≡ log6 2 + 2 log6 3 + log6 11 (mod 228)

206 ≡ log6 2 + log6 3 + log6 5 + log6 7 (mod 228).

3. Solving the linear system of six equations in five unknowns (the logarithms xi =
log6 pi) yields the solutions log6 2 = 21, log6 3 = 208, log6 5 = 98, log6 7 = 107,
and log6 11 = 162.

4. Suppose that the integer k = 77 is selected. Since β · αk = 13 · 677 mod 229 =
147 = 3 · 72, it follows that

log6 13 = (log6 3 + 2 log6 7− 77) mod 228 = 117. �

(ii) Index-calculus algorithm in F∗2m
The elements of the finite field F2m are represented as polynomials in Z2[x] of degree at
mostm−1, where multiplication is performed modulo a fixed irreducible polynomial f(x)
of degreem in Z2[x] (see §2.6). The factor base S can be chosen as the set of all irreducible
polynomials in Z2[x] of degree at most some prescribed bound b. A relation (3.5) is gener-
ated by computing αk mod f(x) and then using trial division to check whether this poly-
nomial is a product of polynomials in S. Example 3.70 illustrates Algorithm 3.68 in F∗2m
on a problem with artificially small parameters.

3.70 Example (Algorithm 3.68 for logarithms in F∗27 ) The polynomial f(x) = x7 + x + 1 is
irreducible over Z2. Hence, the elements of the finite field F27 of order 128 can be repre-
sented as the set of all polynomials in Z2[x] of degree at most 6, where multiplication is
performed modulo f(x). The order of F∗27 is n = 27 − 1 = 127, and α = x is a generator
of F∗27 . Suppose β = x4+x3+x2+x+1. Then y = logx β can be computed as follows,
using the index-calculus technique.

1. The factor base is chosen to be the set of all irreducible polynomials inZ2[x] of degree
at most 3: S = {x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1}.

2. The following five relations involving elements of the factor base are obtained (un-
successful attempts are not shown):

x18 mod f(x) = x6 + x4 = x4(x+ 1)2

x105 mod f(x) = x6 + x5 + x4 + x = x(x+ 1)2(x3 + x2 + 1)

x72 mod f(x) = x6 + x5 + x3 + x2 = x2(x+ 1)2(x2 + x+ 1)

x45 mod f(x) = x5 + x2 + x+ 1 = (x+ 1)2(x3 + x+ 1)

x121 mod f(x) = x6 + x5 + x4 + x3 + x2 + x+ 1 = (x3 + x+ 1)(x3 + x2+1).

These relations yield the following five equations involving the logarithms of ele-
ments in the factor base (for convenience of notation, let p1 = logx x, p2 = logx(x+
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1), p3 = logx(x
2 + x+ 1), p4 = logx(x

3 + x+ 1), and p5 = logx(x
3 + x2 + 1)):

18 ≡ 4p1 + 2p2 (mod 127)

105 ≡ p1 + 2p2 + p5 (mod 127)

72 ≡ 2p1 + 2p2 + p3 (mod 127)

45 ≡ 2p2 + p4 (mod 127)

121 ≡ p4 + p5 (mod 127).

3. Solving the linear system of five equations in five unknowns yields the values p1 = 1,
p2 = 7, p3 = 56, p4 = 31, and p5 = 90.

4. Suppose k = 66 is selected. Since

βαk = (x4 + x3 + x2 + x+ 1)x66 mod f(x) = x5 + x3 + x = x(x2 + x+ 1)2,

it follows that

logx(x
4 + x3 + x2 + x+ 1) = (p1 + 2p3 − 66) mod 127 = 47. �

3.71 Note (running time of Algorithm 3.68) To optimize the running time of the index-calculus
algorithm, the size t of the factor base should be judiciously chosen. The optimal selection
relies on knowledge concerning the distribution of smooth integers in the interval [1, p−1]
for the case of Z∗p, and for the case of F∗2m on the distribution of smooth polynomials (that
is, polynomials all of whose irreducible factors have relatively small degrees) among poly-
nomials in F2[x] of degree less thanm. With an optimal choice of t, the index-calculus al-
gorithm as described above for Z∗p and F∗2m has an expected running time ofLq[12 , c]where
q = p or q = 2m, and c > 0 is a constant.

3.72 Note (fastest algorithms known for discrete logarithms in Z∗p and F∗2m ) Currently, the best
algorithm known for computing logarithms in F∗2m is a variation of the index-calculus algo-
rithm called Coppersmith’s algorithm, with an expected running time ofL2m [13 , c] for some
constant c < 1.587. The best algorithm known for computing logarithms in Z∗p is a varia-
tion of the index-calculus algorithm called the number field sieve, with an expected running
time ofLp[13 , 1.923]. The latest efforts in these directions are surveyed in the Notes section
(§3.12).

3.73 Note (parallelization of the index-calculus algorithm)

(i) For the optimal choice of parameters, the most time-consuming phase of the index-
calculus algorithm is usually the generation of relations involving factor base loga-
rithms (step 2 of Algorithm 3.68). The work for this stage can be easily distributed
among a network of processors by simply having the processors search for relations
independently of each other. The relations generated are collected by a central pro-
cessor. When enough relations have been generated, the corresponding system of lin-
ear equations can be solved (step 3 of Algorithm 3.68) on a single (possibly parallel)
computer.

(ii) The database of factor base logarithms need only be computed once for a given fi-
nite field. Relative to this, the computation of individual logarithms (step 4 of Algo-
rithm 3.68) is considerably faster.
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3.6.6 Discrete logarithm problem in subgroups of Z∗p
The discrete logarithm problem in subgroups ofZ∗p has special interest because its presumed
intractability is the basis for the security of the U.S. Government NIST Digital Signature
Algorithm (§11.5.1), among other cryptographic techniques.

Let p be a prime and q a prime divisor of p− 1. Let G be the unique cyclic subgroup
of Z∗p of order q, and let α be a generator ofG. Then the discrete logarithm problem inG is
the following: given p, q, α, and β ∈ G, find the unique integer x, 0 ≤ x ≤ q−1, such that
αx ≡ β (mod p). The powerful index-calculus algorithms do not appear to apply directly
inG. That is, one needs to apply the index-calculus algorithm in the groupZ∗p itself in order
to compute logarithms in the smaller groupG. Consequently, there are two approaches one
could take to computing logarithms in G:

1. Use a “square-root” algorithm directly in G, such as Pollard’s rho algorithm (Algo-
rithm 3.60). The running time of this approach is O(

√
q).

2. Let γ be a generator of Z∗p, and let l = (p − 1)/q. Use an index-calculus algorithm
in Z∗p to find integers y and z such that α = γy and β = γz. Then x = logα β =
(z/l)(y/l)−1 mod q. (Since y and z are both divisible by l, y/l and z/l are indeed
integers.) The running time of this approach is Lp[13 , c] if the number field sieve is
used.

Which of the two approaches is faster depends on the relative size of
√
q and Lp[13 , c].

3.7 The Diffie-Hellman problem

The Diffie-Hellman problem is closely related to the well-studied discrete logarithm prob-
lem (DLP) of §3.6. It is of significance to public-key cryptography because its apparent in-
tractability forms the basis for the security of many cryptographic schemes including Diffie-
Hellman key agreement and its derivatives (§12.6), and ElGamal public-key encryption
(§8.4).

3.74 Definition The Diffie-Hellman problem (DHP) is the following: given a prime p, a gen-
erator α of Z∗p, and elements αa mod p and αb mod p, find αab mod p.

3.75 Definition The generalized Diffie-Hellman problem (GDHP) is the following: given a fi-
nite cyclic groupG, a generator α of G, and group elements αa and αb, find αab.

Suppose that the discrete logarithm problem in Z∗p could be efficiently solved. Then
given α, p, αa mod p and αb mod p, one could first find a from α, p, and αa mod p by
solving a discrete logarithm problem, and then compute (αb)a = αab mod p. This estab-
lishes the following relation between the Diffie-Hellman problem and the discrete logarithm
problem.

3.76 Fact DHP ≤P DLP. That is, DHP polytime reduces to the DLP. More generally, GDHP
≤P GDLP.

The question then remains whether the GDLP and GDHP are computationally equiv-
alent. This remains unknown; however, some recent progress in this regard is summarized
in Fact 3.77. Recall that φ is the Euler phi function (Definition 2.100), and an integer is
B-smooth if all its prime factors are ≤ B (Definition 3.13).
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3.77 Fact (known equivalences between GDHP and GDLP)

(i) Let p be a prime where the factorization of p−1 is known. Suppose also that φ(p−1)
isB-smooth, whereB = O((ln p)c) for some constant c. Then the DHP and DLP in
Z
∗
p are computationally equivalent.

(ii) More generally, let G be a finite cyclic group of order n where the factorization of
n is known. Suppose also that φ(n) is B-smooth, where B = O((lnn)c) for some
constant c. Then the GDHP and GDLP in G are computationally equivalent.

(iii) LetG be a finite cyclic group of order nwhere the factorization of n is known. If for
each prime divisor p of n either p− 1 or p+ 1 is B-smooth, whereB = O((lnn)c)
for some constant c, then the GDHP and GDLP inG are computationally equivalent.

3.8 Composite moduli

The group of units of Zn, namely Z∗n, has been proposed for use in several cryptographic
mechanisms, including the key agreement protocols of Yacobi and McCurley (see §12.6
notes on page 538) and the identification scheme of Girault (see §10.4 notes on page 423).
There are connections of cryptographic interest between the discrete logarithm and Diffie-
Hellman problems in (cyclic subgroups of)Z∗n, and the problem of factoringn. This section
summarizes the results known along these lines.

3.78 Fact Let n be a composite integer. If the discrete logarithm problem in Z∗n can be solved
in polynomial time, then n can be factored in expected polynomial time.

In other words, the discrete logarithm problem in Z∗n is at least as difficult as the prob-
lem of factoring n. Fact 3.79 is a partial converse to Fact 3.78 and states that the discrete
logarithm in Z∗n is no harder than the combination of the problems of factoring n and com-
puting discrete logarithms in Z∗p for each prime factor p of n.

3.79 Fact Let n be a composite integer. The discrete logarithm problem inZ∗n polytime reduces
to the combination of the integer factorization problem and the discrete logarithm problem
in Z∗p for each prime factor p of n.

Fact 3.80 states that the Diffie-Hellman problem inZ∗n is at least as difficult as the prob-
lem of factoring n.

3.80 Fact Let n = pq where p and q are odd primes. If the Diffie-Hellman problem in Z∗n can
be solved in polynomial time for a non-negligible proportion of all bases α ∈ Z∗n, then n
can be factored in expected polynomial time.

3.9 Computing individual bits

While the discrete logarithm problem inZ∗p (§3.6), the RSA problem (§3.3), and the problem
of computing square roots modulo a composite integer n (§3.5.2) appear to be intractable,
when the problem parameters are carefully selected, it remains possible that it is much eas-
ier to compute some partial information about the solution, for example, its least signifi-
cant bit. It turns out that while some bits of the solution to these problems are indeed easy
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to compute, other bits are equally difficult to compute as the entire solution. This section
summarizes the results known along these lines. The results have applications to the con-
struction of probabilistic public-key encryption schemes (§8.7) and pseudorandom bit gen-
eration (§5.5).

Recall (Definition 1.12) that a function f is called a one-way function if f(x) is easy
to compute for all x in its domain, but for essentially all y in the range of f , it is computa-
tionally infeasible to find any x such that f(x) = y.

Three (candidate) one-way functions

Although no proof is known for the existence of a one-way function, it is widely believed
that one-way functions do exist (cf. Remark 9.12). The following are candidate one-way
functions (in fact, one-way permutations) since they are easy to compute, but their inver-
sion requires the solution of the discrete logarithm problem in Z∗p, the RSA problem, or the
problem of computing square roots modulo n, respectively:

1. exponentiation modulo p. Let p be a prime and let α be a generator of Z∗p. The func-
tion is f : Z∗p −→ Z

∗
p defined as f(x) = αx mod p.

2. RSA function. Let p and q be distinct odd primes, n = pq, and let e be an integer
such that gcd(e, (p − 1)(q − 1)) = 1. The function is f : Zn −→ Zn defined as
f(x) = xe mod n.

3. Rabin function. Let n = pq, where p and q are distinct primes each congruent to
3 modulo 4. The function is f : Qn −→ Qn defined as f(x) = x2 mod n. (Re-
call from Fact 2.160 that f is a permutation, and from Fact 3.46 that inverting f ,
i.e., computing principal square roots, is difficult assuming integer factorization is
intractable.)

The following definitions are used in §3.9.1, 3.9.2, and 3.9.3.

3.81 Definition Let f : S −→ S be a one-way function, where S is a finite set. A Boolean
predicateB : S −→ {0, 1} is said to be a hard predicate for f if:

(i) B(x) is easy to compute given x ∈ S; and
(ii) an oracle which computesB(x) correctly with non-negligible advantage6 given only
f(x) (where x ∈ S) can be used to invert f easily.

Informally,B is a hard predicate for the one-way function f if determining the single
bit B(x) of information about x, given only f(x), is as difficult as inverting f itself.

3.82 Definition Let f : S −→ S be a one-way function, where S is a finite set. A k-bit predi-
cate B(k) : S −→ {0, 1}k is said to be a hard k-bit predicate for f if:

(i) B(k)(x) is easy to compute given x ∈ S; and
(ii) for every Boolean predicate B : {0, 1}k −→ {0, 1}, an oracle which computes
B(B(k)(x)) correctly with non-negligible advantage given only f(x) (where x ∈ S)
can be used to invert f easily.

If such aB(k) exists, then f is said to hide k bits, or the k bits are said to be simultaneously
secure.

Informally,B(k) is a hard k-bit predicate for the one-way function f if determining any
partial information whatsoever about B(k)(x), given only f(x), is as difficult as inverting
f itself.

6In Definitions 3.81 and 3.82, the probability is taken over all choices of x ∈ S and random coin tosses of the
oracle.
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3.9.1 The discrete logarithm problem in Z∗p — individual bits

Let p be an odd prime and α a generator ofZ∗p. Assume that the discrete logarithm problem
in Z∗p is intractable. Let β ∈ Z∗p, and let x = logα β. Recall from Fact 2.135 that β is
a quadratic residue modulo p if and only if x is even. Hence, the least significant bit of
x is equal to (1 −

(
β
p

)
)/2, where the Legendre symbol

(
β
p

)
can be efficiently computed

(Algorithm 2.149). More generally, the following is true.

3.83 Fact Let p be an odd prime, and let α be a generator of Z∗p. Suppose that p − 1 = 2st,
where t is odd. Then there is an efficient algorithm which, given β ∈ Z∗p, computes the s
least significant bits of x = logα β.

3.84 Fact Let p be a prime and α a generator of Z∗p. Define the predicateB : Z∗p −→ {0, 1} by

B(x) =

{
0, if 1 ≤ x ≤ (p− 1)/2,
1, if (p− 1)/2 < x ≤ p− 1.

Then B is a hard predicate for the function of exponentiation modulo p. In other words,
given p, α, and β, computing the single bitB(x) of the discrete logarithm x = logα β is as
difficult as computing the entire discrete logarithm.

3.85 Fact Let p be a prime and α a generator of Z∗p. Let k = O(lg lg p) be an integer. Let the
interval [1, p−1] be partitioned into 2k intervals I0, I1, . . . , I2k−1 of roughly equal lengths.
Define the k-bit predicate B(k) : Z∗p −→ {0, 1}

k by B(k)(x) = j if x ∈ Ij . Then B(k) is
a hard k-bit predicate for the function of exponentiation modulo p.

3.9.2 The RSA problem — individual bits

Let n be a product of two distinct odd primes p and q, and let e be an integer such that
gcd(e, (p − 1)(q − 1)) = 1. Given n, e, and c = xe mod n (for some x ∈ Zn), some
information about x is easily obtainable. For example, since e is an odd integer,(

c

n

)
=

(
xe

n

)
=

(
x

n

)e
=

(
x

n

)
,

and hence the single bit of information
(
x
n

)
can be obtained simply by computing the Jacobi

symbol
(
c
n

)
(Algorithm 2.149). There are, however, other bits of information about x that

are difficult to compute, as the next two results show.

3.86 Fact Define the predicate B : Zn −→ {0, 1} by B(x) = x mod 2; that is, B(x) is the
least significant bit of x. Then B is a hard predicate for the RSA function (see page 115).

3.87 Fact Let k = O(lg lg n) be an integer. Define the k-bit predicate B(k) : Zn −→ {0, 1}k

byB(k)(x) = x mod 2k. That is,B(k)(x) consists of the k least significant bits of x. Then
B(k) is a hard k-bit predicate for the RSA function.

Thus the RSA function has lg lgn simultaneously secure bits.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§3.10 The subset sum problem 117

3.9.3 The Rabin problem — individual bits

Let n = pq, where p and q are distinct primes each congruent to 3 modulo 4.

3.88 Fact Define the predicate B : Qn −→ {0, 1} by B(x) = x mod 2; that is, B(x) is the
least significant bit of the quadratic residue x. Then B is a hard predicate for the Rabin
function (see page 115).

3.89 Fact Let k = O(lg lg n) be an integer. Define the k-bit predicate B(k) : Qn −→ {0, 1}k

by B(k)(x) = x mod 2k. That is, B(k)(x) consists of the k least significant bits of the
quadratic residue x. Then B(k) is a hard k-bit predicate for the Rabin function.

Thus the Rabin function has lg lgn simultaneously secure bits.

3.10 The subset sum problem

The difficulty of the subset sum problem was the basis for the (presumed) security of the
first public-key encryption scheme, called the Merkle-Hellman knapsack scheme (§8.6.1).

3.90 Definition The subset sum problem (SUBSET-SUM) is the following: given a set {a1, a2,
. . . , an} of positive integers, called a knapsack set, and a positive integer s, determine
whether or not there is a subset of the aj that sum to s. Equivalently, determine whether
or not there exist xi ∈ {0, 1}, 1 ≤ i ≤ n, such that

∑n
i=1 aixi = s.

The subset sum problem above is stated as a decision problem. It can be shown that
the problem is computationally equivalent to its computational version which is to actually
determine the xi such that

∑n
i=1 aixi = s, provided that such xi exist. Fact 3.91 provides

evidence of the intractability of the subset sum problem.

3.91 Fact The subset sum problem is NP-complete. The computational version of the subset
sum problem is NP-hard (see Example 2.74).

Algorithms 3.92 and 3.94 give two methods for solving the computational version of
the subset sum problem; both are exponential-time algorithms. Algorithm 3.94 is the fastest
method known for the general subset sum problem.

3.92 Algorithm Naive algorithm for subset sum problem

INPUT: a set of positive integers {a1, a2, . . . , an} and a positive integer s.
OUTPUT: xi ∈ {0, 1}, 1 ≤ i ≤ n, such that

∑n
i=1 aixi = s, provided such xi exist.

1. For each possible vector (x1, x2, . . . , xn) ∈ (Z2)n do the following:

1.1 Compute l =
∑n
i=1 aixi.

1.2 If l = s then return(a solution is (x1, x2, . . . , xn)).

2. Return(no solution exists).

3.93 Fact Algorithm 3.92 takes O(2n) steps and, hence, is inefficient.
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3.94 Algorithm Meet-in-the-middle algorithm for subset sum problem

INPUT: a set of positive integers {a1, a2, . . . , an} and a positive integer s.
OUTPUT: xi ∈ {0, 1}, 1 ≤ i ≤ n, such that

∑n
i=1 aixi = s, provided such xi exist.

1. Set t←bn/2c.
2. Construct a table with entries (

∑t
i=1 aixi, (x1, x2, . . . , xt)) for (x1, x2, . . . , xt) ∈

(Z2)
t. Sort this table by first component.

3. For each (xt+1, xt+2, . . . , xn) ∈ (Z2)n−t, do the following:

3.1 Compute l = s−
∑n
i=t+1 aixi and check, using a binary search, whether l is

the first component of some entry in the table.
3.2 If l =

∑t
i=1 aixi then return(a solution is (x1, x2, . . . , xn)).

4. Return(no solution exists).

3.95 Fact Algorithm 3.94 takes O(n2n/2) steps and, hence, is inefficient.

3.10.1 The L3-lattice basis reduction algorithm

The L3-lattice basis reduction algorithm is a crucial component in many number-theoretic
algorithms. It is useful for solving certain subset sum problems, and has been used for crypt-
analyzing public-key encryption schemes which are based on the subset sum problem.

3.96 Definition Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors inRn. The
inner product of x and y is the real number

< x, y > = x1y1 + x2y2 + · · ·+ xnyn.

3.97 Definition Let y = (y1, y2, . . . , yn) be a vector in Rn. The length of y is the real number

‖y‖ =
√
< y, y > =

√
y21 + y

2
2 + · · ·+ y

2
n.

3.98 Definition Let B = {b1, b2, . . . , bm} be a set of linearly independent vectors in Rn (so
thatm ≤ n). The setL of all integer linear combinations of b1, b2, . . . , bm is called a lattice
of dimensionm; that is, L = Zb1 + Zb2 + · · · + Zbm. The set B is called a basis for the
lattice L.

A lattice can have many different bases. A basis consisting of vectors of relatively
small lengths is called reduced. The following definition provides a useful notion of a re-
duced basis, and is based on the Gram-Schmidt orthogonalization process.

3.99 Definition Let B = {b1, b2, . . . , bn} be a basis for a lattice L ⊂ Rn. Define the vectors
b∗i (1 ≤ i ≤ n) and the real numbers µi,j (1 ≤ j < i ≤ n) inductively by

µi,j =
< bi, b

∗
j >

< b∗j , b
∗
j >
, 1 ≤ j < i ≤ n, (3.8)

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j , 1 ≤ i ≤ n. (3.9)

The basis B is said to be reduced (more precisely, Lovász-reduced) if

|µi,j | ≤
1

2
, for 1 ≤ j < i ≤ n
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(where |µi,j | denotes the absolute value of µi,j), and

‖b∗i ‖
2 ≥

(
3

4
− µ2i,i−1

)
‖b∗i−1‖

2, for 1 < i ≤ n. (3.10)

Fact 3.100 explains the sense in which the vectors in a reduced basis are relatively short.

3.100 Fact Let L ⊂ Rn be a lattice with a reduced basis {b1, b2, . . . , bn}.
(i) For every non-zero x ∈ L, ‖b1‖ ≤ 2(n−1)/2‖x‖.

(ii) More generally, for any set {a1, a2, . . . , at} of linearly independent vectors in L,

‖bj‖ ≤ 2
(n−1)/2max(‖a1‖, ‖a2‖, . . . , ‖at‖), for 1 ≤ j ≤ t.

TheL3-lattice basis reduction algorithm (Algorithm 3.101) is a polynomial-time algo-
rithm (Fact 3.103) for finding a reduced basis, given a basis for a lattice.

3.101 Algorithm L3-lattice basis reduction algorithm

INPUT: a basis (b1, b2, . . . , bn) for a lattice L in Rm,m ≥ n.
OUTPUT: a reduced basis for L.

1. b∗1←b1, B1← < b
∗
1, b
∗
1 >.

2. For i from 2 to n do the following:
2.1 b∗i←bi.
2.2 For j from 1 to i− 1, set µi,j← < bi, b∗j >/Bj and b∗i←b

∗
i − µi,jb

∗
j .

2.3 Bi← < b∗i , b
∗
i >.

3. k←2.
4. Execute subroutine RED(k,k − 1) to possibly update some µi,j .
5. If Bk < (34 − µ

2
k,k−1)Bk−1 then do the following:

5.1 Set µ←µk,k−1, B←Bk + µ2Bk−1, µk,k−1←µBk−1/B, Bk←Bk−1Bk/B,
and Bk−1←B.

5.2 Exchange bk and bk−1.
5.3 If k > 2 then exchange µk,j and µk−1,j for j = 1, 2, . . . , k − 2.
5.4 For i = k + 1, k + 2, . . . , n:

Set t←µi,k, µi,k←µi,k−1 − µt, and µi,k−1←t+ µk,k−1µi,k.
5.5 k←max(2, k − 1).
5.6 Go to step 4.

Otherwise, for l = k − 2, k − 3, . . . , 1, execute RED(k,l), and finally set k←k + 1.
6. If k ≤ n then go to step 4. Otherwise, return(b1, b2, . . . , bn).

RED(k,l) If |µk,l| > 1
2 then do the following:

1. r←b0.5 + µk,lc, bk←bk − rbl.
2. For j from 1 to l − 1, set µk,j←µk,j − rµl,j .
3. µk,l←µk,l − r.

3.102 Note (explanation of selected steps of Algorithm 3.101)
(i) Steps 1 and 2 initialize the algorithm by computing b∗i (1 ≤ i ≤ n) and µi,j (1 ≤ j <
i ≤ n) as defined in equations (3.9) and (3.8), and alsoBi =< b∗i , b

∗
i > (1 ≤ i ≤ n).

(ii) k is a variable such that the vectors b1, b2, . . . , bk−1 are reduced (initially k = 2 in
step 3). The algorithm then attempts to modify bk, so that b1, b2, . . . , bk are reduced.
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(iii) In step 4, the vector bk is modified appropriately so that |µk,k−1| ≤ 1
2 , and the µk,j

are updated for 1 ≤ j < k − 1.
(iv) In step 5, if the condition of equation (3.10) is violated for i = k, then vectors bk

and bk−1 are exchanged and their corresponding parameters are updated. Also, k is
decremented by 1 since then it is only guaranteed that b1, b2, . . . , bk−2 are reduced.
Otherwise, bk is modified appropriately so that |µk,j | ≤ 1

2 for j = 1, 2, . . . , k − 2,
while keeping (3.10) satisfied. k is then incremented because now b1, b2, . . . , bk are
reduced.

It can be proven that the L3-algorithm terminates after a finite number of iterations.
Note that if L is an integer lattice, i.e. L ⊂ Zn, then the L3-algorithm only operates on
rational numbers. The precise running time is given next.

3.103 Fact Let L ⊂ Zn be a lattice with basis {b1, b2, . . . , bn}, and let C ∈ R, C ≥ 2, be such
that ‖bi‖2 ≤ C for i = 1, 2, . . . , n. Then the number of arithmetic operations needed by
Algorithm 3.101 is O(n4 logC), on integers of size O(n logC) bits.

3.10.2 Solving subset sum problems of low density

The density of a knapsack set, as defined below, provides a measure of the size of the knap-
sack elements.

3.104 Definition Let S = {a1, a2, . . . , an} be a knapsack set. The density of S is defined to be

d =
n

max{lg ai | 1 ≤ i ≤ n}
.

Algorithm 3.105 reduces the subset sum problem to one of finding a particular short
vector in a lattice. By Fact 3.100, the reduced basis produced by the L3-algorithm includes
a vector of length which is guaranteed to be within a factor of 2(n−1)/2 of the shortest non-
zero vector of the lattice. In practice, however, the L3-algorithm usually finds a vector
which is much shorter than what is guaranteed by Fact 3.100. Hence, the L3-algorithm
can be expected to find the short vector which yields a solution to the subset sum problem,
provided that this vector is shorter than most of the non-zero vectors in the lattice.

3.105 Algorithm Solving subset sum problems using L3-algorithm

INPUT: a set of positive integers {a1, a2, . . . , an} and an integer s.
OUTPUT: xi ∈ {0, 1}, 1 ≤ i ≤ n, such that

∑n
i=1 aixi = s, provided such xi exist.

1. Letm = d 12
√
ne.

2. Form an (n+1)-dimensional latticeLwith basis consisting of the rows of the matrix

A =




1 0 0 · · · 0 ma1
0 1 0 · · · 0 ma2
0 0 1 · · · 0 ma3
...

...
...

. . .
...

...
0 0 0 · · · 1 man
1
2

1
2

1
2 · · · 1

2 ms




3. Find a reduced basis B of L (use Algorithm 3.101).
4. For each vector y = (y1, y2, . . . , yn+1) in B, do the following:
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4.1 If yn+1 = 0 and yi ∈ {− 12 ,
1
2} for all i = 1, 2, . . . , n, then do the following:

For i = 1, 2, . . . , n, set xi←yi + 12 .
If
∑n
i=1 aixi = s, then return(a solution is (x1, x2, . . . , xn)).

For i = 1, 2, . . . , n, set xi←− yi + 12 .
If
∑n
i=1 aixi = s, then return(a solution is (x1, x2, . . . , xn)).

5. Return(FAILURE). (Either no solution exists, or the algorithm has failed to find one.)

Justification. Let the rows of the matrix A be b1, b2, . . . , bn+1, and let L be the (n + 1)-
dimensional lattice generated by these vectors. If (x1, x2, . . . , xn) is a solution to the subset
sum problem, the vector y =

∑n
i=1 xibi − bn+1 is in L. Note that yi ∈ {− 12 ,

1
2} for

i = 1, 2, . . . , n and yn+1 = 0. Since ‖y‖ =
√
y21 + y

2
2 + · · ·+ y

2
n+1 the vector y is a

vector of short length in L. If the density of the knapsack set is small, i.e. the ai are large,
then most vectors in L will have relatively large lengths, and hence y may be the unique
shortest non-zero vector in L. If this is indeed the case, then there is good possibility of the
L3-algorithm finding a basis which includes this vector.

Algorithm 3.105 is not guaranteed to succeed. Assuming that theL3-algorithm always
produces a basis which includes the shortest non-zero lattice vector, Algorithm 3.105 suc-
ceeds with high probability if the density of the knapsack set is less than 0.9408.

3.10.3 Simultaneous diophantine approximation

Simultaneous diophantine approximation is concerned with approximating a vector ( q1q ,
q2
q ,

. . . , qn
q
) of rational numbers (more generally, a vector (α1, α2, . . . , αn) of real numbers)

by a vector (p1p ,
p2
p , . . . ,

pn
p ) of rational numbers with a smaller denominatorp. Algorithms

for finding simultaneous diophantine approximation have been used to break some knap-
sack public-key encryption schemes (§8.6).

3.106 Definition Let δ be a real number. The vector (p1p ,
p2
p , . . . ,

pn
p ) of rational numbers is said

to be a simultaneous diophantine approximation of δ-quality to the vector ( q1
q
, q2
q
, . . . , qn

q
)

of rational numbers if p < q and∣∣∣∣pqiq − pi
∣∣∣∣ ≤ q−δ for i = 1, 2, . . . , n.

(The larger δ is, the better is the approximation.) Furthermore, it is an unusually good si-
multaneous diophantine approximation (UGSDA) if δ > 1

n
.

Fact 3.107 shows that an UGSDA is indeed unusual.

3.107 Fact For n ≥ 2, the set

Sn(q) =

{(
q1

q
,
q2

q
, . . . ,

qn

q

)
| 0 ≤ qi < q, gcd(q1, q2, . . . , qn, q) = 1

}

has at least 12q
n members. Of these, at most O(qn(1−δ)+1) members have at least one δ-

quality simultaneous diophantine approximation. Hence, for any fixed δ > 1
n

, the fraction
of members of Sn(q) having at least one UGSDA approaches 0 as q →∞.

Algorithm 3.108 reduces the problem of finding a δ-quality simultaneous diophantine
approximation, and hence also a UGSDA, to the problem of finding a short vector in a lat-
tice. The latter problem can (usually) be solved using the L3-lattice basis reduction.
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3.108 Algorithm Finding a δ-quality simultaneous diophantine approximation

INPUT: a vector w = ( q1q ,
q2
q , . . . ,

qn
q ) of rational numbers, and a rational number δ > 0.

OUTPUT: a δ-quality simultaneous diophantine approximation (p1
p
, p2
p
, . . . , pn

p
) of w.

1. Choose an integer λ ≈ qδ.
2. Use Algorithm 3.101 to find a reduced basisB for the (n+1)-dimensional lattice L

which is generated by the rows of the matrix

A =




λq 0 0 · · · 0 0
0 λq 0 · · · 0 0
0 0 λq · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λq 0
−λq1 −λq2 −λq3 · · · −λqn 1




3. For each v = (v1, v2, . . . , vn, vn+1) in B such that vn+1 6= q, do the following:

3.1 p←vn+1.
3.2 For i from 1 to n, set pi←1q

(
vi
λ + pqi

)
.

3.3 If |p qiq − pi| ≤ q
−δ for each i, 1 ≤ i ≤ n, then return(p1p ,

p2
p , . . . ,

pn
p ).

4. Return(FAILURE). (Either no δ-quality simultaneous diophantine approximation ex-
ists, or the algorithm has failed to find one.)

Justification. Let the rows of the matrix A be denoted by b1, b2, . . . , bn+1. Suppose that
( q1
q
, q2
q
, . . . , qn

q
) has a δ-quality approximation (p1

p
, p2
p
, . . . , pn

p
). Then the vector

x = p1b1 + p2b2 + · · ·+ pnbn + pbn+1

= (λ(p1q − pq1), λ(p2q − pq2), . . . , λ(pnq − pqn), p)

is in L and has length less than approximately (
√
n+ 1)q. Thus x is short compared to the

original basis vectors, which are of length roughly q1+δ . Also, if v = (v1, v2, . . . , vn+1) is
a vector in L of length less than q, then the vector (p1p ,

p2
p , . . . ,

pn
p ) defined in step 3 is a δ-

quality approximation. Hence there is a good possibility that theL3-algorithm will produce
a reduced basis which includes a vector v that corresponds to a δ-quality approximation.

3.11 Factoring polynomials over finite fields

The problem considered in this section is the following: given a polynomial f(x) ∈ Fq[x],
with q = pm, find its factorization f(x) = f1(x)e1f2(x)e2 · · · ft(x)et , where each fi(x) is
an irreducible polynomial in Fq[x] and each ei ≥ 1. (ei is called the multiplicity of the fac-
tor fi(x).) Several situations call for the factoring of polynomials over finite fields, such as
index-calculus algorithms in F∗2m (Example 3.70) and Chor-Rivest public-key encryption
(§8.6.2). This section presents an algorithm for square-free factorization, and Berlekamp’s
classical deterministic algorithm for factoring polynomials which is efficient if the under-
lying field is small. Efficient randomized algorithms are known for the case of large q; ref-
erences are provided on page 132.
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3.11.1 Square-free factorization

Observe first that f(x) may be divided by its leading coefficient. Thus, it may be assumed
that f(x) is monic (see Definition 2.187). This section shows how the problem of factoring
a monic polynomial f(x) may then be reduced to the problem of factoring one or more
monic square-free polynomials.

3.109 Definition Let f(x) ∈ Fq[x]. Then f(x) is square-free if it has no repeated factors, i.e.,
there is no polynomial g(x) with deg g(x) ≥ 1 such that g(x)2 divides f(x). The square-
free factorization of f(x) is f(x) =

∏k
i=1 fi(x)

i, where each fi(x) is a square-free poly-
nomial and gcd(fi(x), fj(x)) = 1 for i 6= j. (Some of the fi(x) in the square-free factor-
ization of f(x) may be 1.)

Let f(x) =
∑n
i=0 aix

i be a polynomial of degree n ≥ 1. The (formal) derivative of
f(x) is the polynomial f ′(x) =

∑n−1
i=0 ai+1(i+ 1)x

i. If f ′(x) = 0, then, because p is the
characteristic of Fq , in each term aixi of f(x) for which ai 6= 0, the exponent of x must

be a multiple of p. Hence, f(x) has the form f(x) = a(x)p, where a(x) =
∑n/p
i=0 a

q/p
ip x

i,
and the problem of finding the square-free factorization of f(x) is reduced to finding that
of a(x). Now, it is possible that a′(x) = 0, but repeating this process as necessary, it may
be assumed that f ′(x) 6= 0.

Next, let g(x) = gcd(f(x), f ′(x)). Noting that an irreducible factor of multiplicity k
in f(x) will have multiplicity k − 1 in f ′(x) if gcd(k, p) = 1, and will retain multiplicity
k in f ′(x) otherwise, the following conclusions may be drawn. If g(x) = 1, then f(x)
has no repeated factors; and if g(x) has positive degree, then g(x) is a non-trivial factor
of f(x), and f(x)/g(x) has no repeated factors. Note, however, the possibility of g(x)
having repeated factors, and, indeed, the possibility that g′(x) = 0. Nonetheless, g(x) can
be refined further as above. The steps are summarized in Algorithm 3.110. In the algorithm,
F denotes the square-free factorization of a factor of f(x) in factored form.

3.110 Algorithm Square-free factorization

SQUARE-FREE(f(x))
INPUT: a monic polynomial f(x) ∈ Fq[x] of degree ≥ 1, where Fq has characteristic p.
OUTPUT: the square-free factorization of f(x).

1. Set i←1, F←1, and compute f ′(x).
2. If f ′(x) = 0 then set f(x)←f(x)1/p and F←(SQUARE-FREE(f(x)))p.

Otherwise (i.e. f ′(x) 6= 0) do the following:
2.1 Compute g(x)← gcd(f(x), f ′(x)) and h(x)←f(x)/g(x).
2.2 While h(x) 6= 1 do the following:

Compute h(x)← gcd(h(x), g(x)) and l(x)←h(x)/h(x).
Set F←F · l(x)i, i←i+ 1, h(x)←h(x), and g(x)←g(x)/h(x).

2.3 If g(x) 6= 1 then set g(x)←g(x)1/p and F←F · (SQUARE-FREE(g(x)))p.
3. Return(F ).

Once the square-free factorization f(x) =
∏k
i=1 fi(x)

i is found, the square-free poly-
nomials f1(x), f2(x), . . . , fk(x) need to be factored in order to obtain the complete fac-
torization of f(x).
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3.11.2 Berlekamp’s Q-matrix algorithm

Let f(x) =
∏t
i=1 fi(x) be a monic polynomial in Fq[x] of degree n having distinct irre-

ducible factors fi(x), 1 ≤ i ≤ t. Berlekamp’s Q-matrix algorithm (Algorithm 3.111) for
factoring f(x) is based on the following facts. The set of polynomials

B = {b(x) ∈ Fq[x]/(f(x)) | b(x)
q ≡ b(x) (mod f(x))}

is a vector space of dimension t over Fq . B consists of precisely those vectors in the null
space of the matrix Q− In, whereQ is the n× n matrix with (i, j)-entry qij specified by

xiq mod f(x) =
n−1∑
j=0

qijx
j , 0 ≤ i ≤ n− 1,

and where In is the n × n identity matrix. A basis B = {v1(x), v2(x), . . . , vt(x)} for
B can thus be found by standard techniques from linear algebra. Finally, for each pair of
distinct factors fi(x) and fj(x) of f(x) there exists some vk(x) ∈ B and some α ∈ Fq
such that fi(x) divides vk(x) − α but fj(x) does not divide vk(x) − α; these two factors
can thus be split by computing gcd(f(x), vk(x) − α). In Algorithm 3.111, a vector w =
(w0, w1, . . . , wn−1) is identified with the polynomial w(x) =

∑n−1
i=0 wix

i.

3.111 Algorithm Berlekamp’sQ-matrix algorithm for factoring polynomials over finite fields

INPUT: a square-free monic polynomial f(x) of degree n in Fq[x].
OUTPUT: the factorization of f(x) into monic irreducible polynomials.

1. For each i, 0 ≤ i ≤ n− 1, compute the polynomial

xiq mod f(x) =
n−1∑
j=0

qijx
j .

Note that each qij is an element of Fq .
2. Form the n× n matrix Q whose (i, j)-entry is qij .
3. Determine a basis v1, v2, . . . , vt for the null space of the matrix (Q− In), where In

is the n×n identity matrix. The number of irreducible factors of f(x) is precisely t.
4. Set F←{f(x)}. (F is the set of factors of f(x) found so far; their product is equal

to f(x).)
5. For i from 1 to t do the following:

5.1 For each polynomial h(x) ∈ F such that deg h(x) > 1 do the following: com-
pute gcd(h(x), vi(x)− α) for each α ∈ Fq , and replace h(x) in F by all those
polynomials in the gcd computations whose degrees are ≥ 1.

6. Return(the polynomials in F are the irreducible factors of f(x)).

3.112 Fact The running time of Algorithm 3.111 for factoring a square-free polynomial of degree
n over Fq is O(n3 + tqn2) Fq-operations, where t is the number of irreducible factors of
f(x). The method is efficient only when q is small.
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3.12 Notes and further references
§3.1

Many of the topics discussed in this chapter lie in the realm of algorithmic number the-
ory. Excellent references on this subject include the books by Bach and Shallit [70], Cohen
[263], and Pomerance [993]. Adleman and McCurley [15] give an extensive survey of the
important open problems in algorithmic number theory. Two other recommended surveys
are by Bach [65] and Lenstra and Lenstra [748]. Woll [1253] gives an overview of the re-
ductions among thirteen of these problems.

§3.2
A survey of the integer factorization problem is given by Pomerance [994]. See also Chap-
ters 8 and 10 of Cohen [263], and the books by Bressoud [198] and Koblitz [697]. Brillhart
et al. [211] provide extensive listings of factorizations of integers of the form bn ± 1 for
“small” n and b = 2, 3, 5, 6, 7, 10, 11, 12.

Bach and Sorenson [71] presented some algorithms for recognizing perfect powers
(cf. Note 3.6), one having a worst-case running time ofO(lg3 n) bit operations, and a sec-
ond having an average-case running time of O(lg2 n) bit operations. A more recent algo-
rithm of Bernstein [121] runs in essentially linear time O((lg n)1+o(1)). Fact 3.7 is from
Knuth [692]. Pages 367–369 of this reference contain explicit formulas regarding the ex-
pected sizes of the largest and second largest prime factors, and the expected total number
of prime factors, of a randomly chosen positive integer. For further results, see Knuth and
Trabb Pardo [694], who prove that the average number of bits in the kth largest prime fac-
tor of a randomm-bit number is asymptotically equivalent to the average length of the kth

longest cycle in a permutation onm objects.

Floyd’s cycle-finding algorithm (Note 3.8) is described by Knuth [692, p.7]. Sedgewick,
Szymanski, and Yao [1106] showed that by saving a small number of values from the xi
sequence, a collision can be found by doing roughly one-third the work as in Floyd’s cycle-
finding algorithm. Pollard’s rho algorithm for factoring (Algorithm 3.9) is due to Pollard
[985]. Regarding Note 3.12, Cohen [263, p.422] provides an explanation for the restriction
c 6= 0,−2. Brent [196] presented a cycle-finding algorithm which is better on average
than Floyd’s cycle-finding algorithm, and applied it to yield a factorization algorithm which
is similar to Pollard’s but about 24 percent faster. Brent and Pollard [197] later modified
this algorithm to factor the eighth Fermat number F8 = 22

8

+ 1. Using techniques from
algebraic geometry, Bach [67] obtained the first rigorously proven result concerning the
expected running time of Pollard’s rho algorithm: for fixed k, the probability that a prime
factor p is discovered before step k is at least

(
k
2

)
/p+O(p−3/2) as p→∞.

The p − 1 algorithm (Algorithm 3.14) is due to Pollard [984]. Several practical improve-
ments have been proposed for the p − 1 algorithm, including those by Montgomery [894]
and Montgomery and Silverman [895], the latter using fast Fourier transform techniques.
Williams [1247] presented an algorithm for factoring n which is efficient if n has a prime
factor p such that p+1 is smooth. These methods were generalized by Bach and Shallit [69]
to techniques that factor n efficiently provided n has a prime factor p such that the kth cy-
clotomic polynomialΦk(p) is smooth. The first few cyclotomic polynomials are Φ1(p) =
p−1, Φ2(p) = p+1,Φ3(p) = p2+p+1, Φ4(p) = p2+1, Φ5(p) = p4+p3+p2+p+1,
and Φ6(p) = p2 − p+ 1.

The elliptic curve factoring algorithm (ECA) of §3.2.4 was invented by Lenstra [756].
Montgomery [894] gave several practical improvements to the ECA. Silverman and
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Wagstaff [1136] gave a practical analysis of the complexity of the ECA, and suggested op-
timal parameter selection and running-time guidelines. Lenstra and Manasse [753] imple-
mented the ECA on a network of MicroVAX computers, and were successful in finding 35-
decimal digit prime factors of large (at least 85 digit) composite integers. Later, Dixon and
Lenstra [350] implemented the ECA on a 16K MasPar (massively parallel) SIMD (single
instruction, multiple data) machine. The largest factor they found was a 40-decimal digit
prime factor of an 89-digit composite integer. On November 26 1995, Peter Montgomery
reported finding a 47-decimal digit prime factor of the 99-digit composite integer 5256 + 1
with the ECA.

Hafner and McCurley [536] estimated the number of integers n ≤ x that can be factored
with probability at least 12 using at most t arithmetic operations, by trial division and the
elliptic curve algorithm. Pomerance and Sorenson [997] provided the analogous estimates
for Pollard’s p−1 algorithm and Williams’ p+1 algorithm. They conclude that for a given
running time bound, both Pollard’s p−1 and Williams’ p+1 algorithms factor more integers
than trial division, but fewer than the elliptic curve algorithm.

Pomerance [994] credits the idea of multiplying congruences to produce a solution to x2 ≡
y2 (mod n) for the purpose of factoring n (§3.2.5) to some old work of Kraitchik circa
1926-1929. The continued fraction factoring algorithm, first introduced by Lehmer and
Powers [744] in 1931, and refined more than 40 years later by Morrison and Brillhart [908],
was the first realization of a random square method to result in a subexponential-time al-
gorithm. The algorithm was later analyzed by Pomerance [989] and conjectured to have
an expected running time of Ln[12 ,

√
2]. If the smoothness testing in the algorithm is done

with the elliptic curve method, then the expected running time drops to Ln[12 , 1]. Morrison
and Brillhart were also the first to use the idea of a factor base to test for good (ai, bi) pairs.
The continued fraction algorithm was the champion of factoring algorithms from the mid
1970s until the early 1980s, when it was surpassed by the quadratic sieve algorithm.

The quadratic sieve (QS) (§3.2.6) was discovered by Pomerance [989, 990]. The multiple
polynomial variant of the quadratic sieve (Note 3.25) is due to P. Montgomery, and is de-
scribed by Pomerance [990]; see also Silverman [1135]. A detailed practical analysis of
the QS is given by van Oorschot [1203]. Several practical improvements to the original
algorithms have subsequently been proposed and successfully implemented. The first seri-
ous implementation of the QS was by Gerver [448] who factored a 47-decimal digit num-
ber. In 1984, Davis, Holdridge, and Simmons [311] factored a 71-decimal digit number
with the QS. In 1988, Lenstra and Manasse [753] used the QS to factor a 106-decimal digit
number by distributing the computations to hundreds of computers by electronic mail; see
also Lenstra and Manasse [754]. In 1993, the QS was used by Denny et al. [333] to factor
a 120-decimal digit number. In 1994, the 129-decimal digit (425 bit) RSA-129 challenge
number (see Gardner [440]), was factored by Atkins et al. [59] by enlisting the help of about
1600 computers around the world. The factorization was carried out in 8 months. Table 3.3
shows the estimated time taken, in mips years, for the above factorizations. A mips year is
equivalent to the computational power of a computer that is rated at 1 mips (million instruc-
tions per second) and utilized for one year, or, equivalently, about 3 · 1013 instructions.

The number field sieve was first proposed by Pollard [987] and refined by others. Lenstra et
al. [752] described the special number field sieve (SNFS) for factoring integers of the form
re − s for small positive r and |s|. A readable introduction to the algorithm is provided by
Pomerance [995]. A detailed report of an SNFS implementation is given by Lenstra et al.
[751]. This implementation was used to factor the ninth Fermat number F9 = 2512 + 1,
which is the product of three prime factors having 7, 49, and 99 decimal digits. The gen-
eral number field sieve (GNFS) was introduced by Buhler, Lenstra, and Pomerance [219].
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Year Number of digits mips years

1984 71 0.1
1988 106 140
1993 120 825
1994 129 5000

Table 3.3: Running time estimates for numbers factored with QS.

Coppersmith [269] proposed modifications to the GNFS which improve its running time
to Ln[13 , 1.902], however, the method is not practical; another modification (also imprac-
tical) allows a precomputation taking Ln[13 , 2.007] time and Ln[13 , 1.639] storage, follow-
ing which all integers in a large range of values can be factored in Ln[13 , 1.639] time. A
detailed report of a GNFS implementation on a massively parallel computer with 16384
processors is given by Bernstein and Lenstra [122]. See also Buchmann, Loho, and Za-
yer [217], and Golliver, Lenstra, and McCurley [493]. More recently, Dodson and Lenstra
[356] reported on their GNFS implementation which was successful in factoring a 119-
decimal digit number using about 250 mips years of computing power. They estimated that
this factorization completed about 2.5 times faster than it would with the quadratic sieve.
Most recently, Lenstra [746] announced the factorization of the 130-decimal digit RSA-
130 challenge number using the GNFS. This number is the product of two 65-decimal digit
primes. The factorization was estimated to have taken about 500 mips years of computing
power (compare with Table 3.3). The book edited by Lenstra and Lenstra [749] contains
several other articles related to the number field sieve.

The ECA, continued fraction algorithm, quadratic sieve, special number field sieve, and
general number field sieve have heuristic (or conjectured) rather than proven running times
because the analyses make (reasonable) assumptions about the proportion of integers gen-
erated that are smooth. See Canfield, Erdös, and Pomerance [231] for bounds on the pro-
portion of y-smooth integers in the interval [2, x]. Dixon’s algorithm [351] was the first
rigorously analyzed subexponential-time algorithm for factoring integers. The fastest rig-
orously analyzed algorithm currently known is due to Lenstra and Pomerance [759] with
an expected running time of Ln[12 , 1]. These algorithms are of theoretical interest only, as
they do not appear to be practical.

§3.3
The RSA problem was introduced in the landmark 1977 paper by Rivest, Shamir, and Adle-
man [1060].

§3.4
The quadratic residuosity problem is of much historical interest, and was one of the main
algorithmic problems discussed by Gauss [444].

§3.5
An extensive treatment of the problem of finding square roots modulo a prime p, or more
generally, the problem of finding dth roots in a finite field, can be found in Bach and Shallit
[70]. The presentation of Algorithm 3.34 for finding square roots modulo a prime is de-
rived from Koblitz [697, pp.48-49]; a proof of correctness can be found there. Bach and
Shallit attribute the essential ideas of Algorithm 3.34 to an 1891 paper by A. Tonelli. Al-
gorithm 3.39 is from Bach and Shallit [70], who attribute it to a 1903 paper of M. Cipolla.

The computational equivalence of computing square roots modulo a composite n and fac-
toring n (Fact 3.46 and Note 3.47) was first discovered by Rabin [1023].
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§3.6
A survey of the discrete logarithm problem is given by McCurley [827]. See also Odlyzko
[942] for a survey of recent advances.

Knuth [693] attributes the baby-step giant-step algorithm (Algorithm 3.56) to D. Shanks.
The baby-step giant-step algorithms for searching restricted exponent spaces (cf. Note 3.59)
are described by Heiman [546]. Suppose that p is a k-bit prime, and that only exponents of
Hamming weight t are used. Coppersmith (personal communication, July 1995) observed
that this exponent space can be searched in k ·

(
k/2
t/2

)
steps by dividing the exponent into two

equal pieces so that the Hamming weight of each piece is t/2; if k is much smaller than 2t/2,
this is an improvement over Note 3.59.

Pollard’s rho algorithm for logarithms (Algorithm 3.60) is due to Pollard [986]. Pollard also
presented a lambda method for computing discrete logarithms which is applicable when x,
the logarithm sought, is known to lie in a certain interval. More specifically, if the interval is
of widthw, the method is expected to takeO(

√
w) group operations and requires storage for

onlyO(lgw) group elements. Van Oorschot and Wiener [1207] showed how Pollard’s rho
algorithm can be parallelized so that usingm processors results in a speedup by a factor of
m. This has particular significance to cyclic groups such as elliptic curve groups, for which
no subexponential-time discrete logarithm algorithm is known.

The Pohlig-Hellman algorithm (Algorithm 3.63) was discovered by Pohlig and Hellman
[982]. A variation which represents the logarithm in a mixed-radix notation and does not
use the Chinese remainder theorem was given by Thiong Ly [1190].

According to McCurley [827], the basic ideas behind the index-calculus algorithm (Algo-
rithm 3.68) first appeared in the work of Kraitchik (circa 1922-1924) and of Cunningham
(see Western and Miller [1236]), and was rediscovered by several authors. Adleman [8] de-
scribed the method for the groupZ∗p and analyzed the complexity of the algorithm. Hellman
and Reyneri [555] gave the first description of an index-calculus algorithm for extension
fields Fpm with p fixed.

Coppersmith, Odlyzko, and Schroeppel [280] presented three variants of the index-calculus
method for computing logarithms in Z∗p: the linear sieve, the residue list sieve, and the
Gaussian integer method. Each has a heuristic expected running time of Lp[12 , 1] (cf.
Note 3.71). The Gaussian integer method, which is related to the method of ElGamal [369],
was implemented in 1990 by LaMacchia and Odlyzko [736] and was successful in comput-
ing logarithms in Z∗p with p a 192-bit prime. The paper concludes that it should be feasible
to compute discrete logarithms modulo primes of about 332 bits (100 decimal digits) using
the Gaussian integer method. Gordon [510] adapted the number field sieve for factoring in-
tegers to the problem of computing logarithms inZ∗p; his algorithm has a heuristic expected
running time of Lp[13 , c], where c = 32/3 ≈ 2.080. Schirokauer [1092] subsequently pre-
sented a modification of Gordon’s algorithm that has a heuristic expected running time of
Lp[

1
3 , c], where c = (64/9)1/3 ≈ 1.923 (Note 3.72). This is the same running time as

conjectured for the number field sieve for factoring integers (see §3.2.7). Recently, Weber
[1232] implemented the algorithms of Gordon and Schirokauer and was successful in com-
puting logarithms inZ∗p, where p is a 40-decimal digit prime such that p−1 is divisible by a
38-decimal digit (127-bit) prime. More recently, Weber, Denny, and Zayer (personal com-
munication, April 1996) announced the solution of a discrete logarithm problem modulo a
75-decimal digit (248-bit) prime p with (p− 1)/2 prime.

Blake et al. [145] made improvements to the index-calculus technique for F∗2m and com-
puted logarithms in F∗2127 . Coppersmith [266] dramatically improved the algorithm and
showed that under reasonable assumptions the expected running time of his improved al-
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gorithm is L2m [13 , c] for some constant c < 1.587 (Note 3.72). Later, Odlyzko [940] gave
several refinements to Coppersmith’s algorithm, and a detailed practical analysis; this pa-
per provides the most extensive account to date of the discrete logarithm problem in F∗2m .
A similar practical analysis was also given by van Oorschot [1203]. Most recently in 1992,
Gordon and McCurley [511] reported on their massively parallel implementation of Cop-
persmith’s algorithm, combined with their own improvements. Using primarily a 1024 pro-
cessor nCUBE-2 machine with 4 megabytes of memory per processor, they completed the
precomputation of logarithms of factor base elements (which is the dominant step of the
algorithm) required to compute logarithms in F∗2227 , F∗2313 , and F∗2401 . The calculations for
F
∗
2401 were estimated to take 5 days. Gordon and McCurley also completed most of the pre-

computations required for computing logarithms in F∗2503 ; the amount of time to complete
this task on the 1024 processor nCUBE-2 was estimated to be 44 days. They concluded that
computing logarithms in the multiplicative groups of fields as large as F2593 still seems to
be out of their reach, but might be possible in the near future with a concerted effort.

It was not until 1992 that a subexponential-time algorithm for computing discrete loga-
rithms over all finite fields Fq was discovered by Adleman and DeMarrais [11]. The ex-
pected running time of the algorithm is conjectured to beLq[12 , c] for some constant c. Adle-
man [9] generalized the number field sieve from algebraic number fields to algebraic func-
tion fields which resulted in an algorithm, called the function field sieve, for computing dis-
crete logarithms in F∗pm ; the algorithm has a heuristic expected running time of Lpm [13 , c]
for some constant c > 0 when log p ≤ mg(m), and where g is any function such that
0 < g(m) < 0.98 and limm→∞ g(m) = 0. The practicality of the function field sieve has
not yet been determined. It remains an open problem to find an algorithm with a heuristic
expected running time of Lq[13 , c] for all finite fields Fq.

The algorithms mentioned in the previous three paragraphs have heuristic (or conjectured)
rather than proven running times because the analyses make some (reasonable) assump-
tions about the proportion of integers or polynomials generated that are smooth, and also
because it is not clear when the system of linear equations generated has full rank, i.e., yields
a unique solution. The best rigorously analyzed algorithms known for the discrete loga-
rithm problem in Z∗p and F∗2m are due to Pomerance [991] with expected running times of
Lp[

1
2 ,
√
2] and L2m [12 ,

√
2], respectively. Lovorn [773] obtained rigorously analyzed algo-

rithms for the fields Fp2 and Fpm with log p < m0.98, having expected running times of
Lp2 [

1
2 ,
3
2 ] and Lpm [12 ,

√
2], respectively.

The linear system of equations collected in the quadratic sieve and number field sieve fac-
toring algorithms, and the index-calculus algorithms for computing discrete logarithms in
Z
∗
p and F∗2m , are very large. For the problem sizes currently under consideration, these sys-

tems cannot be solved using ordinary linear algebra techniques, due to both time and space
constraints. However, the equations generated are extremely sparse, typically with at most
50 non-zero coefficients per equation. The technique of structured or so-called intelligent
Gaussian elimination (see Odlyzko [940]) can be used to reduce the original sparse system
to a much smaller system that is still fairly sparse. The resulting system can be solved us-
ing either ordinary Gaussian elimination, or one of the conjugate gradient, Lanczos (Cop-
persmith, Odlyzko, and Schroeppel [280]), or Wiedemann algorithms [1239] which were
also designed to handle sparse systems. LaMacchia and Odlyzko [737] have implemented
some of these algorithms and concluded that the linear algebra stages arising in both integer
factorization and the discrete logarithm problem are not running-time bottlenecks in prac-
tice. Recently, Coppersmith [272] proposed a modification of the Wiedemann algorithm
which allows parallelization of the algorithm; for an analysis of Coppersmith’s algorithm,
see Kaltofen [657]. Coppersmith [270] (see also Montgomery [896]) presented a modifi-
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cation of the Lanczos algorithm for solving sparse linear equations over F2; this variant
appears to be the most efficient in practice.

As an example of the numbers involved, Gordon and McCurley’s [511] implementation for
computing logarithms in F∗2401 produced a total of 117164 equations from a factor base con-
sisting of the 58636 irreducible polynomials in F2[x] of degree at most 19. The system of
equations had 2068707 non-zero entries. Structured Gaussian elimination was then applied
to this system, the result being a 16139× 16139 system of equations having 1203414 non-
zero entries, which was then solved using the conjugate gradient method. Another example
is from the recent factorization of the RSA-129 number (see Atkins et al. [59]). The sieving
step produced a sparse matrix of 569466 rows and 524339 columns. Structured Gaussian
elimination was used to reduce this to a dense 188614× 188160 system, which was then
solved using ordinary Gaussian elimination.

There are many ways of representing a finite field, although any two finite fields of the same
order are isomorphic (see also Note 3.55). Lenstra [757] showed how to compute an iso-
morphism between any two explicitly given representations of a finite field in deterministic
polynomial time. Thus, it is sufficient to find an algorithm for computing discrete loga-
rithms in one representation of a given field; this algorithm can then be used, together with
the isomorphism obtained by Lenstra’s algorithm, to compute logarithms in any other rep-
resentation of the same field.

Menezes, Okamoto, and Vanstone [843] showed how the discrete logarithm problem for an
elliptic curve over a finite field Fq can be reduced to the discrete logarithm problem in some
extension field Fqk . For the special class of supersingular curves, k is at most 6, thus pro-
viding a subexponential-time algorithm for the former problem. This work was extended
by Frey and Rück [422]. No subexponential-time algorithm is known for the discrete log-
arithm problem in the more general class of non-supersingular elliptic curves.

Adleman, DeMarrais, and Huang [12] presented a subexponential-time algorithm for find-
ing logarithms in the jacobian of large genus hyperelliptic curves over finite fields. More
precisely, there exists a number c, 0 < c ≤ 2.181, such that for all sufficiently large g ≥ 1
and all odd primes p with log p ≤ (2g + 1)0.98, the expected running time of the algo-
rithm for computing logarithms in the jacobian of a genus g hyperelliptic curve over Zp is
conjectured to be Lp2g+1 [

1
2 , c].

McCurley [826] invented a subexponential-time algorithm for the discrete logarithm prob-
lem in the class group of an imaginary quadratic number field. See also Hafner and Mc-
Curley [537] for further details, and Buchmann and Düllmann [216] for an implementation
report.

In 1994, Shor [1128] conceived randomized polynomial-time algorithms for computing dis-
crete logarithms and factoring integers on a quantum computer, a computational device
based on quantum mechanical principles; presently it is not known how to build a quantum
computer, nor if this is even possible. Also recently, Adleman [10] demonstrated the feasi-
bility of using tools from molecular biology to solve an instance of the directed Hamiltonian
path problem, which is NP-complete. The problem instance was encoded in molecules of
DNA, and the steps of the computation were performed with standard protocols and en-
zymes. Adleman notes that while the currently available fastest supercomputers can exe-
cute approximately 1012 operations per second, it is plausible for a DNA computer to ex-
ecute 1020 or more operations per second. Moreover such a DNA computer would be far
more energy-efficient than existing supercomputers. It is not clear at present whether it is
feasible to build a DNA computer with such performance. However, should either quantum
computers or DNA computers ever become practical, they would have a very significant
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impact on public-key cryptography.

§3.7
Fact 3.77(i) is due to den Boer [323]. Fact 3.77(iii) was proven by Maurer [817], who also
proved more generally that the GDHP and GDLP in a groupG of order n are computation-
ally equivalent when certain extra information of length O(lg n) bits is given. The extra
information depends only on n and not on the definition of G, and consists of parameters
that define cyclic elliptic curves of smooth order over the fields Zpi where the pi are the
prime divisors of n.

Waldvogel and Massey [1228] proved that if a and b are chosen uniformly and randomly
from the interval {0, 1, . . . , p−1}, the valuesαab mod p are roughly uniformly distributed
(see page 537).

§3.8
Facts 3.78 and 3.79 are due to Bach [62]. Fact 3.80 is due to Shmuely [1127]. McCurley
[825] refined this result to prove that for specially chosen composite n, the ability to solve
the Diffie-Hellman problem in Z∗n for the fixed base α = 16 implies the ability to factor n.

§3.9
The notion of a hard Boolean predicate (Definition 3.81) was introduced by Blum and Mi-
cali [166], who also proved Fact 3.84. The notion of a hard k-bit predicate (Definition 3.82)
was introduced by Long and Wigderson [772], who also proved Fact 3.85; see also Peralta
[968]. Fact 3.83 is due to Peralta [968]. The results on hard predicates and k-bit predicates
for the RSA functions (Facts 3.86 and 3.87) are due to Alexi et al. [23]. Facts 3.88 and 3.89
are due to Vazirani and Vazirani [1218].

Yao [1258] showed how any one-way length-preserving permutation can be transformed
into a more complicated one-way length-preserving permutation which has a hard predi-
cate. Subsequently, Goldreich and Levin [471] showed how any one-way function f can be
transformed into a one-way function g which has a hard predicate. Their construction is as
follows. Define the function g by g(p, x) = (p, f(x)), where p is a binary string of the same
length as x, say n. Then g is also a one-way function and B(p, x) =

∑n
i=1 pixi mod 2 is

a hard predicate for g.

Håstad, Schrift, and Shamir [543] considered the one-way function f(x) = αx mod n,
where n is a Blum integer and α ∈ Z∗n. Under the assumption that factoring Blum integers
is intractable, they proved that all the bits of this function are individually hard. Moreover,
the lower half as well as the upper half of the bits are simultaneously secure.

§3.10
The subset sum problem (Definition 3.90) is sometimes confused with the knapsack prob-
lem which is the following: given two sets {a1, a2, . . . , an} and {b1, b2, . . . , bn} of pos-
itive integers, and given two positive integers s and t, determine whether or not there is a
subset S of {1, 2, . . . , n} such that

∑
i∈S ai ≤ s and

∑
i∈S bi ≥ t. The subset sum prob-

lem is actually a special case of the knapsack problem when ai = bi for i = 1, 2, . . . , n
and s = t. Algorithm 3.94 is described by Odlyzko [941].

The L3-lattice basis reduction algorithm (Algorithm 3.101) and Fact 3.103 are both due to
Lenstra, Lenstra, and Lovász [750]. Improved algorithms have been given for lattice basis
reduction, for example, by Schnorr and Euchner [1099]; consult also Section 2.6 of Cohen
[263]. Algorithm 3.105 for solving the subset sum problem involving knapsacks sets of low
density is from Coster et al. [283]. Unusually good simultaneous diophantine approxima-
tions were first introduced and studied by Lagarias [723]; Fact 3.107 and Algorithm 3.108
are from this paper.
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§3.11
A readable introduction to polynomial factorization algorithms is given by Lidl and Nieder-
reiter [764, Chapter 4]. Algorithm 3.110 for square-free factorization is from Geddes, Cza-
por, and Labahn [445]. Yun [1261] presented an algorithm that is more efficient than Algo-
rithm 3.110 for finding the square-free factorization of a polynomial. The running time of
the algorithm is onlyO(n2)Zp-operations when f(x) is a polynomial of degreen inZp[x].
A lucid presentation of Yun’s algorithm is provided by Bach and Shallit [70]. Berlekamp’s
Q-matrix algorithm (Algorithm 3.111) was first discovered by Prange [999] for the purpose
of factoring polynomials of the form xn − 1 over finite fields. The algorithm was later and
independently discovered by Berlekamp [117] who improved it for factoring general poly-
nomials over finite fields.

There is no deterministic polynomial-time algorithm known for the problem of factoring
polynomials over finite fields. There are, however, many efficient randomized algorithms
that work well even when the underlying field is very large, such as the algorithms given
by Ben-Or [109], Berlekamp [119], Cantor and Zassenhaus [232], and Rabin [1025]. For
recent work along these lines, see von zur Gathen and Shoup [1224], as well as Kaltofen
and Shoup [658].
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