Why study compilers?

You may never write a commercial compiler, but that's not why we study compilers. We study compiler construction for the following reasons: 

· Writing a compiler gives a student experience with large-scale applications development. Your compiler program may be the largest program you write as a student. Experience working with really big data structures and complex interactions between algorithms will help you out on your next big programming project. 

· Compiler writing is one of the shining triumphs of CS theory. It demonstrates the value of theory over the impulse to just "hack up" a solution. 

· Compiler writing is a basic element of programming language research. Many language researchers write compilers for the languages they design. 

· Many applications have similar properties to one or more phases of a compiler, and compiler expertise and tools can help an application programmer working on other projects besides compilers. 

Compilers - a brief overview 

Purpose: translate a program in some language (the source language) into a lower-level language (the target language).

Phases: 

Lexical Analysis:

Converts a sequence of characters into words, or tokens
Syntax Analysis:

Converts a sequence of tokens into a parse tree
Semantic Analysis:

Manipulates parse tree to verify symbol and type information

Intermediate Code Generation:

Converts parse tree into a sequence of intermediate code instructions

Optimization:

Manipulates intermediate code to produce a more efficient program

Final Code Generation:

Translates intermediate code into final (machine/assembly) code

Example of the Compilation Process 

Consider the example from Figure 1.10 on p. 13 of the book in detail. 

position = initial + rate * 60

	


30 or so characters, from a single line of source code, are first transformed by lexical analysis into a sequence of 7 tokens. Those tokens are then used to build a tree of height 4 during syntax analysis. Semantic analysis may transform the tree into one of height 5, that includes a type conversion necessary for real addition on an integer operand. Intermediate code generation uses a simple traversal algorithm to linearize the tree back into a sequence of machine-independent three-address-code instructions. 

t1 = inttoreal(60)

t2 = id3 * t1

t3 = id2 + t2

id1 = t3

	


Optimization of the intermediate code allows the four instructions to be reduced to two machine-independent instructions. Final code generation might implement these two instructions using 5 machine instructions, in which the actual registers and addressing modes of the CPU are utilized. 

MOVF
id3, R2

MULF
#60.0, R2

MOVF
id2, R1

ADDF
R2, R1

MOVF
R1, id1
	


Overview of Lexical Analysis 

Lexical Analyzer a.k.a. scanner 

· Convert from a sequence of characters into a (shorter) sequence of tokens 

· Identify and categorize specific character sequences into tokens 

· Skip comments & whitespace 

· Handle lexical errors (illegal characters, malformed tokens) 

· Efficiency is crucial; scanner may perform elaborate input buffering 

· Tokens are specified as regular expressions, e.g. IDENTIFIER=[a-zA-Z][a-zA-Z0-9]* 

· Lexical Analyzers are implemented by DFAs. 

The term "token" usually refers to an object (or struct) containing complete information about a single lexical entity, but it is often also used to refer the category ("class" if you prefer) of that entity. The term "lexeme" denotes the actual string of characters that comprise a particular occurrence ("instance" if you like) of a token. 

Regular Expressions 

The notation we use to precisely capture all the variations that a given category of token may take are called "regular expressions" (or, less formally, "patterns". The word "pattern" is really vague and there are lots of other notations for patterns besides regular expressions). Regular expressions are a shorthand notation for sets of strings. In order to even talk about "strings" you have to first define an alphabet, the set of characters which can appear. 

1. Epsilon is a regular expression denoting the set containing the empty string 

2. Any letter in the alphabet is also a regular expression denoting the set containing a one-letter string consisting of that letter. 

3. For regular expressions r and s, 
         r | s
is a regular expression denoting the union of r and s 

4. For regular expressions r and s, 
         r s
is a regular expression denoting the set of strings consisting of a member of r followed by a member of s 

5. For regular expression r, 
         r*
is a regular expression denoting the set of strings consisting of zero or more occurrences of r. 

6. You can parenthesize a regular expression to specify operator precedence (otherwise, alternation is like plus, concatenation is like times, and closure is like exponentiation) 

Although these operators are sufficient to describe all regular languages, in practice everybody uses extensions: 

· For regular expression r, 
         r+
is a regular expression denoting the set of strings consisting of one or more occurrences of r. Equivalent to rr* 

· For regular expression r, 
         r?
is a regular expression denoting the set of strings consisting of zero or one occurrence of r. Equivalent to r|epsilon 

· The notation [abc] is short for a|b|c. [a-z] is short for a|b|...|z 

Finite Automata 

A finite automaton is an abstract, mathematical machine, also known as a finite state machine, with the following components: 

1. A set of states S 

2. A set of input symbols E (the alphabet) 

3. A transition function move(state, symbol) : new state(s) 

4. A start state S0 

5. A set of final states F 

For a deterministic finite automaton (DFA), the function move(state, symbol) goes to at most one state, and symbol is never epsilon. 

Finite automata correspond in a 1:1 relationship to transition diagrams; from any transition diagram one can write down the formal automaton in terms of items #1-#5 above, and vice versa. To draw the transition diagram for a finite automaton: 

· draw a circle for each state s in S; put a label inside the circles to identify each state by number or name 

· draw an arrow between Si and Sj, labeled with x whenever the transition says to move(Si, x) : Sj 

· draw a "wedgie" into the start state S0 to identify it 

· draw a second circle inside each of the final states in F 

