
CS143 Handout #8
Winter 01-02

Notes on formal grammars
Handout written by Maggie Johnson and revised by me.

What is a grammar?
A grammar is a powerful tool for describing and analyzing languages. It is a set of rules by which
valid sentences in a language are constructed. Here’s a trivial example of English grammar:

sentence –> <subject> <verb-phrase> <object>
subject –> This | Computers | I
verb-phrase –> <adverb> <verb> | <verb>
adverb –> never
verb –> is | run | am | tell
object –> the <noun> | a <noun> | <noun>
noun –> university | world | cheese | lies

Using the above rules or productions, we can derive simple sentences such as these:

This is a university.
Computers run the world.
I am the cheese.
I never tell lies.

Here is a leftmost derivation of the first sentence using these productions.

sentence –> <subject> <verb-phrase> <object>
–> This <verb-phrase> <object>
–> This <verb> <object>
–> This is <object>
–> This is a <noun>
–> This is a university

In addition to several reasonable sentences, we can also derive nonsense like “Computers run
cheese” and “This am a lies”. These sentences doesn't make semantic sense, but they are
syntactically correct because they are of the sequence of subject, verb-phrase, and object. Grammars
are a tool for syntax, not semantics. We worry about semantics at a later point in the compiling
process. In the syntax analysis phase, we verify the correctness of the structure only.

Vocabulary
We need to review some definitions before we can proceed:

grammar a set of rules by which valid sentences in a language are constructed.

nonterminal a grammar symbol that can be replaced/expanded to a sequence of symbols.

terminal an actual word in a language; these are the symbols in a grammar that cannot be
replaced by anything else. “terminal” is supposed to conjure up the idea that it is
a dead-end— no further expansion is possible from here.

production a grammar rule that describes how to replace/exchange symbols. The general
form of a production for a nonterminal is:

X –> Y1Y2Y3...Yn

The nonterminal X is declared equivalent to the concatenation of the symbols
Y1Y2Y3...Yn. The production means that anywhere where we encounter X, we may

2

replace it by the string Y1Y2Y3...Yn. Eventually we will have a string containing
nothing that can be expanded further, i.e., it will consist of only terminals. Such a
string is called a sentence. In the context of programming languages, a sentence
is a syntactically correct and complete program.

derivation a sequence of applications of the rules of a grammar that produces a finished
string of terminals. A leftmost derivation is where we always substitute for the
leftmost nonterminal as we apply the rules (we can similarly define a rightmost
derivation). A derivation is also called a parse.

start symbol a grammar has a single nonterminal (the start symbol) from which all sentences
derive:

S –> X1X2X3...Xn

All sentences are derived from S by successive replacement using the productions
of the grammar.

null symbol it is sometimes useful to specify that a symbol can be replaced by nothing at all.
To indicate this, we use the null symbol ε, e.g., A –> B | ε.

BNF a way of specifying programming languages using formal grammars and
production rules with a particular form of notation (Backus-Naur form).

A few grammar exercises to try on your own, the alphabet in each case is {a,b}
• Define a grammar for the language of strings with one or more a's followed by zero or more b's.
• Define a grammar for even-length palindromes.
• Define a grammar for strings where the number of a's is equal to the number b's.
• Define a grammar where the number of a's is not equal to the number b's. (Hint: think about it

as two separate cases...)
• Can you write regular expressions for these languages? Why or why not?

Parse representation
In working with grammars, we can represent the application of the rules to derive a sentence in two
ways. The first is a derivation as shown earlier for “This is a university” where the rules are
applied step-by-step and we substitute for one nonterminal at a time. Think of a derivation as a
history of how the sentence was parsed because it not only includes which productions were
applied, but also the order they were applied (i.e. which nonterminal was chosen for expansion at
each step). There can many different derivations for the same sentence (the leftmost, the rightmost,
and so on).

A parse tree is the second method for representation. It diagrams how each symbol derives from
other symbols in a hierarchical manner. Here is a parse tree for “This is a university”:

Although the parse tree includes all of the productions that were applied, it does not encode the
order they were applied. For an unambiguous grammar (we’ll define ambiguity in a minute), there
is exactly one parse tree for a particular sentence.

s

 v-psubject

This verb

is

object

a noun

university

3

More formal definitions
Here are some other definitions we will need, described in reference to this example grammar:

S –> AB
A –> Ax | y
B –> z

alphabet
The alphabet is {S, A, B, x, y, z}. It is divided into two disjoint sets. The terminal
alphabet consists of terminals, which appear in the sentences of the language: {x, y, z}. The
remaining symbols are the nonterminal alphabet; these are the symbols that appear on the
left side of productions and can be replaced during the course of a derivation: {S, A, B}.
Formally, we use V for the alphabet, T for the terminal alphabet and N for the nonterminal
alphabet giving us: V = T ∪ N, and T ∩ N = ∅.

The convention used in our lecture notes are a sans-serif font for grammar elements,
lowercase for terminals, uppercase for nonterminals, and underlined lowercase (e.g., u, v) to
denote arbitrary strings of terminal and nonterminal symbols (possibly null). In some
textbooks, Greek symbols are used for arbitrary strings of terminal and nonterminal
symbols (e.g., α, β)

context-free grammar
To define a language, we need a set of productions, of the general form: u –> v . In a
context-free grammar, u is a single nonterminal and v is an arbitrary string of terminal and
nonterminal symbols. When parsing, we can replace u by v wherever it occurs. We shall
refer to this set of productions symbolically as P.

formal grammar
We formally define a grammar as a 4-tuple {S, P, N, T}. S is the start symbol and S ∈ N, P
is the set of productions, and N and T are the nonterminal and terminal alphabets. A
sentence is a string of symbols in T derived from S using one or more applications of
productions in P. A string of symbols derived from S but possibly including nonterminals
is called a sentential form or a working string.

A production u –> v is used to replace an occurrence of u by v . Formally, if we apply a
production p ∈ P to a string of symbols w in V to yield a new string of symbols z in V, we
say that z derived from w using p, written as follows: w =>p z . We also use:

w => z z derives from w (production unspecified)
w =>* z z derives from w using zero or more productions
w =>+ z z derives from w using one or more productions

equivalence
The language L(G) defined by grammar G is the set of sentences derivable using G. Two
grammars G and G' are said to be equivalent if the languages they generate L(G) and L(G')
are the same.

A hierarchy of grammars
We owe a lot of our understanding of grammars to the work of the American linguist Noam
Chomsky (yes, the Noam Chomsky known for his politics). There are four categories of formal
grammars in the Chomsky Hierarchy, they span from Type 0, the most general, to Type 3, the most
restrictive. More restrictions on the grammar make it easier to describe and efficiently parse, but
reduce the expressive power.

4

Type 0: free or unrestricted grammars
These are the most general. Productions are of the form u –> v where both u and v are
arbitrary strings of symbols in V, with u non-null. There are no restrictions on what
appears on the left or right-hand side other than the left-hand side must be non-empty.

Type 1: context-sensitive grammars
Productions are of the form uXw –> uvw where u , v and w are arbitrary strings of
symbols in V, with v non-null, and X a single nonterminal. In other words, X may be
replaced by v but only when it is surrounded by u and w . (i.e. in a particular context).

Type 2: context-free grammars
Productions are of the form X–> v where v is an arbitrary string of symbols in V, and X
is a single nonterminal. Wherever you find X, you can replace with v (regardless of
context).

Type 3: regular grammars
Productions are of the form X–> a or X–> aY where X and Y are nonterminals and a is a
terminal. That is the left-hand side must be a single nonterminal and the right-hand side
can be either a single terminal by itself or with a single nonterminal. These grammars are
the most limited in terms of expressive power.

Every type 3 grammar is a type 2 grammar, and every type 2 is a type 1 and so on. Type 3
grammars are particularly easy to parse because of the lack of recursive constructs. Efficient parsers
exist for many classes of Type 2 grammars. Although Type 1 and Type 0 grammars are more
powerful than Type 2 and 3, they are far less useful since we cannot create efficient parsers for
them. In designing programming languages using formal grammars, we will use Type 2 or context-
free grammars, often just abbreviated as CFG.

Issues in parsing context-free grammars
There are several efficient approaches to parsing most Type 2 grammars and we will talk through
them over the next few lectures. However, there are some issues that can interfere with parsing that
we must take into consideration when designing the grammar. Let’s take a look at three of them:
ambiguity, recursive rules, and left-factoring.

Ambiguity
If a grammar permits more than one parse tree for some sentences, it is said to be ambiguous. For
example, consider the following classic arithmetic expression grammar:

E –> E op E | (E) | int
op –> + | - | * | /

This grammar denotes expressions that consist of integers joined by binary operators and possibly
including parentheses. As defined above, this grammar is ambiguous because for certain sentences
we can construct more than one parse tree. For example, consider the expression 10 – 2 * 5. We
parse by first applying the production E –> E op E. The parse tree on the left chooses to expand that
first op to *, the one on the right to -. We have two completely different parse trees. Which one is
correct?

E

E

int

 op

*
int

E

E E op

int- 5

10 2

E

E

int

 op

-int

E

E E op

int*
10

2 5

5

Both trees are legal in the grammar as stated and thus either interpretation is valid. Although natural
languages can tolerate some kind of ambiguity (puns, plays on words, etc.), it is not acceptable in
computer languages. We don’t want the compiler just haphazardly deciding which way to interpret
our expressions! Given our expectations from algebra concerning precedence, only one of the trees
seems right. The right-hand tree fits our expectation that * “binds tighter” and for that result to be
computed first then integrated in the outer expression which has a lower precedence operator.

It’s fairly easy for a grammar to become ambiguous if you are not careful in its construction.
Unfortunately, there is no magical technique that can be used to resolve all varieties of ambiguity. It
is an undecidable problem to determine whether any grammar is ambiguous, much less attempt to
mechanically remove all ambiguity. However, that doesn't mean in practice that we cannot detect
ambiguity or can't do something about it. For programming language grammars, we usually take
pains to construct an unambiguous grammar or introduce additional disambiguating rules to throw
away the undesirable parse trees, leaving only one for each sentence.

Using the above ambiguous expression grammar, one technique would leave the grammar as is, but
add disambiguating rules into the parser implementation. We could code into the parser knowledge
of precedence and associativity to break the tie and force the parser to build the tree on the right
rather than the left. The advantage of this is that the grammar remains simple and less complicated.
But as a downside, the syntactic structure of the language is no longer given by the grammar alone.

Another approach is to change the grammar to only allow the one tree that correctly reflects our
intention and eliminate the others. For the expression grammar, we can separate expressions into
multiplicative and additive subgroups and force them to be expanded in the desired order.

E –> E t_op E | T
t_op –> + | -
T –> T f_op T | F
f_op –> * | /
F –> (E) | int

Terms are addition/subtraction expressions and factors used for multiplication and division. Since
the base case for expression is a term, addition and subtraction will appear higher in the parse tree,
and thus receive lower precedence.

After verifying that the above re-written grammar has only one parse tree for the earlier ambiguous
expression, you might thing we were home free, but now consider the expression 10 –2 –5. The
recursion on both sides of the binary operator allows either side to match repetitions. The arithmetic
operators usually associate to the left, so by replacing the right-hand side with the base case will
force the repetitive matches onto the left side. The final result is:

E –> E t_op T | T
t_op –> + | -
T –> T f_op F | F
f_op –> * | /
F –> (E) | int

Whew! The obvious disadvantage of changing the grammar to remove ambiguity is that it may
complicate and obscure the original grammar definitions. There is no mechanical means to change
any ambiguous grammar into an unambiguous one—it is known to be an undecidable problem (in
fact, even determining that a CFG is ambiguous is undecidable). However, most programming
languages have only limited issues with ambiguity that can be resolved using ad hoc techniques.

6

Recursive productions
Productions are often defined in terms of themselves. For example a list of variables in a
programming language grammar could be specified by this production:

variable_list –> variable | variable_list , variable

Such productions are said to be recursive. If the recursive nonterminal is at the left of the right-side
of the production, e.g. A –> u | Av , we call the production left-recursive. Similarly, we can define a
right-recursive production: A –> u | v A. Some parsing techniques have trouble with one or the
other variants of recursive productions and so sometimes we have to massage the grammar into a
different but equivalent form. Left-recursive productions can be especially troublesome in the top-
down parsers (we’ll see why a bit later). Handily, there is a simple technique for rewriting the
grammar to move the recursion to the other side. For example, consider this left-recursive rule:

X –> Xa | Xb | AB | C | DEF

To convert the rule, we introduce a new nonterminal X' that we append to the end of all non-left-
recursive productions for X. The expansion for the new nonterminal is basically the reverse of the
original left-recursive rule. The re-written productions are:

X –> ABX' | CX' | DEFX'
X' –> aX' | bX' | ε

It appears we just exchanged the left-recursive rules for an equivalent right-recursive version. This
might seem pointless, but some parsing algorithms prefer or even require only left or right
recursion.

Left-factoring
The parser usually reads tokens from left to right and it is convenient if upon reading a token it can
make an immediate decision about which production from the grammar to expand. However, this
can be trouble if there are productions that have common first symbol(s) on the right side of the
productions. Here is an example we often see in programming language grammars:

Stmt –> if Cond then Stmt else Stmt | if Cond then Stmt | Other |

The common prefix is if Cond then Stmt. This causes problems because when a parser encounter
an “if”, it does not know which production to use. A useful technique called left-factoring allows
us to restructure the grammar to avoid this siutation. We rewrite the productions to defer the
decision about which of the options to choose until we have seen enough of the input to make the
appropriate choice. We factor out the common part of the two options into a shared rule that both
will use and then add a new rule that picks up where the tokens diverge.

Stmt –> if Cond then Stmt OptElse | Other | …
OptElse –> else S | ε

In the re-written grammar, upon reading an “if” we expand first production and wait until if Cond
then Stmt has been seen to decide whether to expand OptElse to else or ε.

Hidden left-factors and hidden left recursion
A grammar may not appear to have left recursion or left factors, yet still have issues that will
interfere with parsing. This may be because the issues are hidden and need to be first exposed via
substitution.

7

For example, consider this grammar:

A –> da | acB
B –> abB | daA | Af

A cursory examination of the grammar may not detect that the first and second productions of B
overlap with the third. We substitute the expansions for A into the third production to expose this:

A –> da | acB
B –> abB | daA | daf | acBf

This exchanges the original third production of B for several new productions, one for each of the
productions for A. These directly show the overlap, and we can then left-factor:

A –> da | acB
B –> aM | daN
M –> bB | cBf
N –> A | f

Similarly, the following grammar does not appear to have any left-recursion:

S –> Tu | wx
T –> Sq | vvS

Yet after substitution of S into T, the left-recursion comes to light:

S –> Tu | wx
T –> Tuq | wxq | vvS

If we then eliminate left-recursion, we get:

S –> Tu | wx
T –> wxqT' | vvST'
T' –> uqT' | ε

Programming language case study: ALGOL
Algol is of interest to us because it was the first programming language to be defined using a
grammar. It grew out of an international effort in the late 1950’s to create a “universal
programming language” that would run on all machines. At that time, FORTRAN and COBOL
were the prominent languages, with new languages sprouting up all over the place. Programmers
became increasingly concerned about portability of programs, and being able to communicate with
one another on programming topics.

Consequently the ACM and GAMM (Gesellschaft für angewandte Mathematik und Mechanik)
decided to come up with a single programming language that all could use on their computers, and
in whose terms, programs could be communicated between the users of all machines. Their first
decision was not to use FORTRAN as their universal language. This may seem surprising to us
today, since it was the most commonly used language back then. However, as Alan J. Perlis, one
of the original committee members, puts it:

“Today, FORTRAN is the property of the computing world, but in 1957, it was an
IBM creation and closely tied to IBM hardware. For these reasons, FORTRAN was
unacceptable as a universal language.”

8

ALGOL-58 was the first version of the language, followed up very soon after by ALGOL-60,
which is the version that had the most impact. As a language, it introduced the following features:

• block structure and nested structures
• strong typing
• scoping
• procedures and functions
• call by value, call by reference
• side effects (is this good or bad?)
• recursion

It may seem surprising that recursion was not present in the original FORTRAN or COBOL. You
probably know that to implement recursion we need a runtime stack to store the activation records
as functions are called. In FORTRAN and COBOL, activation records were created at compile
time, not runtime. Thus, only one activation record per subroutine was created. No stack was used.
The parameters for the subroutine were copied into the activation record and that data area was used
for subroutine processing.

The ALGOL report was the first time we see BNF to describe a programming language. Both John
Backus and Peter Naur were on the ALGOL committees. They derived this description technique
from an earlier paper written by Backus. The technique was adopted because they needed a
machine-independent method of description. If one looks at the early definitions of FORTRAN,
one can see the links to the IBM hardware. With ALGOL, the machine was not relevant. BNF had
a huge impact on programming language design and compiler construction. First, it stimulated a
large number of studies on the formal structure of programming languages laying the groundwork
for a theoretical approach to language design. Second, a formal syntactic description could be used
to drive a compiler directly (as we shall see).

ALGOL had a tremendous impact on programming language design, compiler construction, and
language theory, but the language itself was a commercial failure. Partly this was due to design
decisions (overly complex features, no IO) along with the politics of the time (popularity of Fortran,
lack of support from the all-powerful IBM, resistance to BNF).

Bibliography
A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools. Reading, MA:

Addison-Wesley, 1986.
J. Backus, “The Syntax and Semantics of the Proposed International Algebraic Language of

the Zurich ACM-GAMM Conference,” Proceedings of the International Conference on
Information Processing, 1959, pp. 125-132.

N. Chomsky, “On Certain Formal Properties of Grammars,” Information and Control, Vol. 2,
1959, pp. 137-167.

J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: McGraw-Hill, 1990.
D. Cohen, Introduction to Computer Theory. New York: Wiley, 1986.
J.C. Martin, Introduction to Languages and the Theory of Computation. New York, NY:

McGraw-Hill, 1991.
P. Naur, “Programming Languages, Natural Languages, and Mathematics,” Communications

of the ACM, Vol 18, No. 12, 1975, pp. 676-683.
J. Sammet, Programming Languages: History and Fundamentals. Englewood-Cliffs, NJ:

Prentice-Hall, 1969.
R.L.Wexelblat, History of Programming Languages. London: Academic Press, 1981.

