
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

c©1997 by CRC Press, Inc.

Chapter8
Public-Key Encryption

Contents in Brief

8.1 Introduction . 283
8.2 RSA public-key encryption . 285
8.3 Rabin public-key encryption . 292
8.4 ElGamal public-key encryption 294
8.5 McEliece public-key encryption 298
8.6 Knapsack public-key encryption 300
8.7 Probabilistic public-key encryption 306
8.8 Notes and further references . 312

8.1 Introduction

This chapter considers various techniques for public-key encryption, also referred to as
asymmetric encryption. As introduced previously (§1.8.1), in public-key encryption sys-
tems each entityA has a public key e and a corresponding private key d. In secure systems,
the task of computing d given e is computationally infeasible. The public key defines an en-
cryption transformation Ee, while the private key defines the associated decryption trans-
formationDd. Any entity B wishing to send a messagem to A obtains an authentic copy
ofA’s public key e, uses the encryption transformation to obtain the ciphertext c = Ee(m),
and transmits c to A. To decrypt c, A applies the decryption transformation to obtain the
original messagem = Dd(c).

The public key need not be kept secret, and, in fact, may be widely available – only its
authenticity is required to guarantee that A is indeed the only party who knows the corre-
sponding private key. A primary advantage of such systems is that providing authentic pub-
lic keys is generally easier than distributing secret keys securely, as required in symmetric-
key systems.

The main objective of public-key encryption is to provide privacy or confidentiality.
SinceA’s encryption transformation is public knowledge, public-key encryption alone does
not provide data origin authentication (Definition 9.76) or data integrity (Definition 9.75).
Such assurances must be provided through use of additional techniques (see §9.6), including
message authentication codes and digital signatures.

Public-key encryption schemes are typically substantially slower than symmetric-key
encryption algorithms such as DES (§7.4). For this reason, public-key encryption is most
commonly used in practice for the transport of keys subsequently used for bulk data en-
cryption by symmetric algorithms and other applications including data integrity and au-
thentication, and for encrypting small data items such as credit card numbers and PINs.

283

284 Ch. 8 Public-Key Encryption

Public-key decryption may also provide authentication guarantees in entity authentication
and authenticated key establishment protocols.

Chapter outline

The remainder of the chapter is organized as follows. §8.1.1 provides introductory material.
The RSA public-key encryption scheme is presented in §8.2; related security and implemen-
tation issues are also discussed. Rabin’s public-key encryption scheme, which is provably
as secure as factoring, is the topic of §8.3. §8.4 considers the ElGamal encryption scheme;
related security and implementation issues are also discussed. The McEliece public-key
encryption scheme, based on error-correcting codes, is examined in §8.5. Although known
to be insecure, the Merkle-Hellman knapsack public-key encryption scheme is presented in
§8.6 for historical reasons – it was the first concrete realization of a public-key encryption
scheme. Chor-Rivest encryption is also presented (§8.6.2) as an example of an as-yet un-
broken public-key encryption scheme based on the subset sum (knapsack) problem. §8.7
introduces the notion of probabilistic public-key encryption, designed to meet especially
stringent security requirements. §8.8 concludes with Chapter notes and references.

The number-theoretic computational problems which form the security basis for the
public-key encryption schemes discussed in this chapter are listed in Table 8.1.

public-key encryption scheme computational problem

RSA integer factorization problem (§3.2)
RSA problem (§3.3)

Rabin integer factorization problem (§3.2)
square roots modulo composite n (§3.5.2)

ElGamal discrete logarithm problem (§3.6)
Diffie-Hellman problem (§3.7)

generalized ElGamal generalized discrete logarithm problem (§3.6)
generalized Diffie-Hellman problem (§3.7)

McEliece linear code decoding problem
Merkle-Hellman knapsack subset sum problem (§3.10)
Chor-Rivest knapsack subset sum problem (§3.10)
Goldwasser-Micali probabilistic quadratic residuosity problem (§3.4)
Blum-Goldwasser probabilistic integer factorization problem (§3.2)

Rabin problem (§3.9.3)

Table 8.1: Public-key encryption schemes discussed in this chapter, and the related computational
problems upon which their security is based.

8.1.1 Basic principles

Objectives of adversary

The primary objective of an adversary who wishes to “attack” a public-key encryption sch-
eme is to systematically recover plaintext from ciphertext intended for some other entityA.
If this is achieved, the encryption scheme is informally said to have been broken. A more
ambitious objective is key recovery – to recoverA’s private key. If this is achieved, the en-

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.2 RSA public-key encryption 285

cryption scheme is informally said to have been completely broken since the adversary then
has the ability to decrypt all ciphertext sent to A.

Types of attacks

Since the encryption transformations are public knowledge, a passive adversary can al-
ways mount a chosen-plaintext attack on a public-key encryption scheme (cf. §1.13.1). A
stronger attack is a chosen-ciphertext attack where an adversary selects ciphertext of its
choice, and then obtains by some means (from the victim A) the corresponding plaintext
(cf. §1.13.1). Two kinds of these attacks are usually distinguished.

1. In an indifferent chosen-ciphertext attack, the adversary is provided with decryptions
of any ciphertexts of its choice, but these ciphertexts must be chosen prior to receiving
the (target) ciphertext c it actually wishes to decrypt.

2. In an adaptive chosen-ciphertext attack, the adversary may use (or have access to)A’s
decryption machine (but not the private key itself) even after seeing the target cipher-
text c. The adversary may request decryptions of ciphertext which may be related to
both the target ciphertext, and to the decryptions obtained from previous queries; a
restriction is that it may not request the decryption of the target c itself.

Chosen-ciphertext attacks are of concern if the environment in which the public-key en-
cryption scheme is to be used is subject to such an attack being mounted; if not, the exis-
tence of a chosen-ciphertext attack is typically viewed as a certificational weakness against
a particular scheme, although apparently not directly exploitable.

Distributing public keys

The public-key encryption schemes described in this chapter assume that there is a means
for the sender of a message to obtain an authentic copy of the intended receiver’s public
key. In the absence of such a means, the encryption scheme is susceptible to an imperson-
ation attack, as outlined in §1.8.2. There are many techniques in practice by which authentic
public keys can be distributed, including exchanging keys over a trusted channel, using a
trusted public file, using an on-line trusted server, and using an off-line server and certifi-
cates. These and related methods are discussed in §13.4.

Message blocking

Some of the public-key encryption schemes described in this chapter assume that the mes-
sage to be encrypted is, at most, some fixed size (bitlength). Plaintext messages longer
than this maximum must be broken into blocks, each of the appropriate size. Specific tech-
niques for breaking up a message into blocks are not discussed in this book. The compo-
nent blocks can then be encrypted independently (cf. ECB mode in §7.2.2(i)). To provide
protection against manipulation (e.g., re-ordering) of the blocks, the Cipher Block Chaining
(CBC) mode may be used (cf. §7.2.2(ii) and Example 9.84). Since the CFB and OFB modes
(cf. §7.2.2(iii) and §7.2.2(iv)) employ only single-block encryption (and not decryption) for
both message encryption and decryption, they cannot be used with public-key encryption
schemes.

8.2 RSA public-key encryption

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. Adleman, is
the most widely used public-key cryptosystem. It may be used to provide both secrecy and
digital signatures and its security is based on the intractability of the integer factorization

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

286 Ch. 8 Public-Key Encryption

problem (§3.2). This section describes the RSA encryption scheme, its security, and some
implementation issues; the RSA signature scheme is covered in §11.3.1.

8.2.1 Description

8.1 Algorithm Key generation for RSA public-key encryption

SUMMARY: each entity creates an RSA public key and a corresponding private key.
Each entity A should do the following:

1. Generate two large random (and distinct) primes p and q, each roughly the same size.
2. Compute n = pq and φ = (p− 1)(q − 1). (See Note 8.5.)
3. Select a random integer e, 1 < e < φ, such that gcd(e, φ) = 1.
4. Use the extended Euclidean algorithm (Algorithm 2.107) to compute the unique in-

teger d, 1 < d < φ, such that ed ≡ 1 (mod φ).
5. A’s public key is (n, e); A’s private key is d.

8.2 Definition The integers e and d in RSA key generation are called the encryption exponent
and the decryption exponent, respectively, while n is called the modulus.

8.3 Algorithm RSA public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:

(a) Obtain A’s authentic public key (n, e).
(b) Represent the message as an integerm in the interval [0, n− 1].
(c) Compute c = me mod n (e.g., using Algorithm 2.143).
(d) Send the ciphertext c to A.

2. Decryption. To recover plaintextm from c, A should do the following:

(a) Use the private key d to recoverm = cd mod n.

Proof that decryption works. Since ed ≡ 1 (mod φ), there exists an integer k such that
ed = 1 + kφ. Now, if gcd(m, p) = 1 then by Fermat’s theorem (Fact 2.127),

mp−1 ≡ 1 (mod p).

Raising both sides of this congruence to the power k(q−1) and then multiplying both sides
bym yields

m1+k(p−1)(q−1) ≡ m (mod p).

On the other hand, if gcd(m, p) = p, then this last congruence is again valid since each side
is congruent to 0 modulo p. Hence, in all cases

med ≡ m (mod p).

By the same argument,

med ≡ m (mod q).

Finally, since p and q are distinct primes, it follows that

med ≡ m (mod n),

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.2 RSA public-key encryption 287

and, hence,

cd ≡ (me)d ≡ m (mod n).

8.4 Example (RSA encryption with artificially small parameters)
Key generation. Entity A chooses the primes p = 2357, q = 2551, and computes n =
pq = 6012707 and φ = (p−1)(q−1) = 6007800. A chooses e = 3674911 and, using the
extended Euclidean algorithm, finds d = 422191 such that ed ≡ 1 (mod φ). A’s public
key is the pair (n = 6012707, e = 3674911), while A’s private key is d = 422191.
Encryption. To encrypt a messagem = 5234673,B uses an algorithm for modular expo-
nentiation (e.g., Algorithm 2.143) to compute

c = me mod n = 52346733674911 mod 6012707 = 3650502,

and sends this to A.
Decryption. To decrypt c, A computes

cd mod n = 3650502422191 mod 6012707 = 5234673. �

8.5 Note (universal exponent) The number λ = lcm(p− 1, q− 1), sometimes called the uni-
versal exponent of n, may be used instead of φ = (p − 1)(q − 1) in RSA key generation
(Algorithm 8.1). Observe that λ is a proper divisor of φ. Using λ can result in a smaller
decryption exponent d, which may result in faster decryption (cf. Note 8.9). However, if p
and q are chosen at random, then gcd(p−1, q−1) is expected to be small, and consequently
φ and λ will be roughly of the same size.

8.2.2 Security of RSA

This subsection discusses various security issues related to RSA encryption. Various attacks
which have been studied in the literature are presented, as well as appropriate measures to
counteract these threats.

(i) Relation to factoring

The task faced by a passive adversary is that of recovering plaintextm from the correspond-
ing ciphertext c, given the public information (n, e) of the intended receiver A. This is
called the RSA problem (RSAP), which was introduced in §3.3. There is no efficient algo-
rithm known for this problem.

One possible approach which an adversary could employ to solving the RSA problem
is to first factor n, and then compute φ and d just as A did in Algorithm 8.1. Once d is
obtained, the adversary can decrypt any ciphertext intended forA.

On the other hand, if an adversary could somehow compute d, then it could subse-
quently factor n efficiently as follows. First note that since ed ≡ 1 (mod φ), there is an
integer k such that ed − 1 = kφ. Hence, by Fact 2.126(i), aed−1 ≡ 1 (mod n) for all
a ∈ Z∗n. Let ed − 1 = 2st, where t is an odd integer. Then it can be shown that there
exists an i ∈ [1, s] such that a2

i−1t 6≡ ±1 (mod n) and a2
it ≡ 1 (mod n) for at least half

of all a ∈ Z∗n; if a and i are such integers then gcd(a2
i−1t − 1, n) is a non-trivial factor

of n. Thus the adversary simply needs to repeatedly select random a ∈ Z∗n and check if
an i ∈ [1, s] satisfying the above property exists; the expected number of trials before a
non-trivial factor of n is obtained is 2. This discussion establishes the following.

8.6 Fact The problem of computing the RSA decryption exponentd from the public key (n, e),
and the problem of factoring n, are computationally equivalent.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

288 Ch. 8 Public-Key Encryption

When generating RSA keys, it is imperative that the primes p and q be selected in such a
way that factoring n = pq is computationally infeasible; see Note 8.8 for more details.

(ii) Small encryption exponent e

In order to improve the efficiency of encryption, it is desirable to select a small encryption
exponent e (see Note 8.9) such as e = 3. A group of entities may all have the same encryp-
tion exponent e, however, each entity in the group must have its own distinct modulus (cf.
§8.2.2(vi)). If an entity A wishes to send the same messagem to three entities whose pub-
lic moduli are n1, n2, n3, and whose encryption exponents are e = 3, then A would send
ci = m

3 mod ni, for i = 1, 2, 3. Since these moduli are most likely pairwise relatively
prime, an eavesdropper observing c1, c2, c3 can use Gauss’s algorithm (Algorithm 2.121)
to find a solution x, 0 ≤ x < n1n2n3, to the three congruences

x ≡ c1 (mod n1)
x ≡ c2 (mod n2)
x ≡ c3 (mod n3).

Since m3 < n1n2n3, by the Chinese remainder theorem (Fact 2.120), it must be the case
that x = m3. Hence, by computing the integer cube root of x, the eavesdropper can recover
the plaintextm.

Thus a small encryption exponent such as e = 3 should not be used if the same mes-
sage, or even the same message with known variations, is sent to many entities. Alter-
natively, to prevent against such an attack, a pseudorandomly generated bitstring of ap-
propriate length (taking into account Coppersmith’s attacks mentioned on pages 313–314)
should be appended to the plaintext message prior to encryption; the pseudorandom bit-
string should be independently generated for each encryption. This process is sometimes
referred to as salting the message.

Small encryption exponents are also a problem for small messagesm, because ifm <
n1/e, then m can be recovered from the ciphertext c = me mod n simply by computing
the integer eth root of c; salting plaintext messages also circumvents this problem.

(iii) Forward search attack

If the message space is small or predictable, an adversary can decrypt a ciphertext c by sim-
ply encrypting all possible plaintext messages until c is obtained. Salting the message as
described above is one simple method of preventing such an attack.

(iv) Small decryption exponent d

As was the case with the encryption exponent e, it may seem desirable to select a small de-
cryption exponent d in order to improve the efficiency of decryption.1 However, if gcd(p−
1, q − 1) is small, as is typically the case, and if d has up to approximately one-quarter as
many bits as the modulus n, then there is an efficient algorithm (referenced on page 313)
for computing d from the public information (n, e). This algorithm cannot be extended to
the case where d is approximately the same size as n. Hence, to avoid this attack, the de-
cryption exponent d should be roughly the same size as n.

(v) Multiplicative properties

Let m1 and m2 be two plaintext messages, and let c1 and c2 be their respective RSA en-
cryptions. Observe that

(m1m2)
e ≡ me1m

e
2 ≡ c1c2 (mod n).

1In this case, one would select d first and then compute e in Algorithm 8.1, rather than vice-versa.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.2 RSA public-key encryption 289

In other words, the ciphertext corresponding to the plaintext m = m1m2 mod n is c =
c1c2 mod n; this is sometimes referred to as the homomorphic property of RSA. This ob-
servation leads to the following adaptive chosen-ciphertext attack on RSA encryption.

Suppose that an active adversary wishes to decrypt a particular ciphertext c = me mod
n intended for A. Suppose also that A will decrypt arbitrary ciphertext for the adversary,

other than c itself. The adversary can conceal c by selecting a random integer x ∈ Z∗n
and computing c = cxe mod n. Upon presentation of c, A will compute for the adversary
m = (c)d mod n. Since

m ≡ (c)d ≡ cd(xe)d ≡ mx (mod n),

the adversary can then computem = mx−1 mod n.
This adaptive chosen-ciphertext attack should be circumvented in practice by imposing

some structural constraints on plaintext messages. If a ciphertext c is decrypted to a message
not possessing this structure, then c is rejected by the decryptor as being fraudulent. Now,
if a plaintext message m has this (carefully chosen) structure, then with high probability
mx mod n will not for x ∈ Z∗n. Thus the adaptive chosen-ciphertext attack described in
the previous paragraph will fail because A will not decrypt c for the adversary. Note 8.63
provides a powerful technique for guarding against adaptive chosen-ciphertext and other
kinds of attacks.

(vi) Common modulus attack

The following discussion demonstrates why it is imperative for each entity to choose its
own RSA modulus n.

It is sometimes suggested that a central trusted authority should select a single RSA
modulus n, and then distribute a distinct encryption/decryption exponent pair (ei, di) to
each entity in a network. However, as shown in (i) above, knowledge of any (ei, di) pair al-
lows for the factorization of the modulus n, and hence any entity could subsequently deter-
mine the decryption exponents of all other entities in the network. Also, if a single message
were encrypted and sent to two or more entities in the network, then there is a technique by
which an eavesdropper (any entity not in the network) could recover the message with high
probability using only publicly available information.

(vii) Cycling attacks

Let c = me mod n be a ciphertext. Let k be a positive integer such that ce
k

≡ c (mod n);
since encryption is a permutation on the message space {0, 1, . . . , n − 1} such an integer
k must exist. For the same reason it must be the case that ce

k−1
≡ m (mod n). This ob-

servation leads to the following cycling attack on RSA encryption. An adversary computes
ce mod n, ce

2

mod n, ce
3

mod n, . . . until c is obtained for the first time. If ce
k

mod n =

c, then the previous number in the cycle, namely ce
k−1
mod n, is equal to the plaintextm.

A generalized cycling attack is to find the smallest positive integer u such that f =
gcd(ce

u

− c, n) > 1. If

ce
u

≡ c (mod p) and ce
u

6≡ c (mod q) (8.1)

then f = p. Similarly, if

ce
u

6≡ c (mod p) and ce
u

≡ c (mod q) (8.2)

then f = q. In either case, n has been factored, and the adversary can recover d and then
m. On the other hand, if both

ce
u

≡ c (mod p) and ce
u

≡ c (mod q), (8.3)

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

290 Ch. 8 Public-Key Encryption

then f = n and ce
u

≡ c (mod n). In fact, u must be the smallest positive integer k
for which ce

k

≡ c (mod n). In this case, the basic cycling attack has succeeded and so
m = ce

u−1
mod n can be computed efficiently. Since (8.3) is expected to occur much less

frequently than (8.1) or (8.2), the generalized cycling attack usually terminates before the
cycling attack does. For this reason, the generalized cycling attack can be viewed as being
essentially an algorithm for factoring n.

Since factoringn is assumed to be intractable, these cycling attacks do not pose a threat
to the security of RSA encryption.

(viii) Message concealing

A plaintext messagem, 0 ≤ m ≤ n− 1, in the RSA public-key encryption scheme is said
to be unconcealed if it encrypts to itself; that is,me ≡ m (mod n). There are always some
messages which are unconcealed (for examplem = 0, m = 1, andm = n − 1). In fact,
the number of unconcealed messages is exactly

[1 + gcd(e− 1, p− 1)] · [1 + gcd(e− 1, q − 1)].

Since e− 1, p− 1 and q− 1 are all even, the number of unconcealed messages is always at
least 9. If p and q are random primes, and if e is chosen at random (or if e is chosen to be
a small number such as e = 3 or e = 216 + 1 = 65537), then the proportion of messages
which are unconcealed by RSA encryption will, in general, be negligibly small, and hence
unconcealed messages do not pose a threat to the security of RSA encryption in practice.

8.2.3 RSA encryption in practice

There are numerous ways of speeding up RSA encryption and decryption in software and
hardware implementations. Some of these techniques are covered in Chapter 14, includ-
ing fast modular multiplication (§14.3), fast modular exponentiation (§14.6), and the use
of the Chinese remainder theorem for faster decryption (Note 14.75). Even with these im-
provements, RSA encryption/decryption is substantially slower than the commonly used
symmetric-key encryption algorithms such as DES (Chapter 7). In practice, RSA encryp-
tion is most commonly used for the transport of symmetric-key encryption algorithm keys
and for the encryption of small data items.

The RSA cryptosystem has been patented in the U.S. and Canada. Several standards
organizations have written, or are in the process of writing, standards that address the use
of the RSA cryptosystem for encryption, digital signatures, and key establishment. For dis-
cussion of patent and standards issues related to RSA, see Chapter 15.

8.7 Note (recommended size of modulus) Given the latest progress in algorithms for factoring
integers (§3.2), a 512-bit modulusn provides only marginal security from concerted attack.
As of 1996, in order to foil the powerful quadratic sieve (§3.2.6) and number field sieve
(§3.2.7) factoring algorithms, a modulus n of at least 768 bits is recommended. For long-
term security, 1024-bit or larger moduli should be used.

8.8 Note (selecting primes)

(i) As mentioned in §8.2.2(i), the primes p and q should be selected so that factoring
n = pq is computationally infeasible. The major restriction on p and q in order to
avoid the elliptic curve factoring algorithm (§3.2.4) is that p and q should be about
the same bitlength, and sufficiently large. For example, if a 1024-bit modulus n is to
be used, then each of p and q should be about 512 bits in length.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.2 RSA public-key encryption 291

(ii) Another restriction on the primes p and q is that the difference p − q should not be
too small. If p − q is small, then p ≈ q and hence p ≈

√
n. Thus, n could be

factored efficiently simply by trial division by all odd integers close to
√
n. If p and

q are chosen at random, then p − q will be appropriately large with overwhelming
probability.

(iii) In addition to these restrictions, many authors have recommended that p and q be
strong primes. A prime p is said to be a strong prime (cf. Definition 4.52) if the fol-
lowing three conditions are satisfied:

(a) p− 1 has a large prime factor, denoted r;
(b) p+ 1 has a large prime factor; and
(c) r − 1 has a large prime factor.

An algorithm for generating strong primes is presented in §4.4.2. The reason for con-
dition (a) is to foil Pollard’s p−1 factoring algorithm (§3.2.3) which is efficient only
if n has a prime factor p such that p − 1 is smooth. Condition (b) foils the p + 1
factoring algorithm mentioned on page 125 in §3.12, which is efficient only if n has
a prime factor p such that p + 1 is smooth. Finally, condition (c) ensures that the
cycling attacks described in §8.2.2(vii) will fail.
If the prime p is randomly chosen and is sufficiently large, then both p− 1 and p+1
can be expected to have large prime factors. In any case, while strong primes protect
against the p−1 and p+1 factoring algorithms, they do not protect against their gen-
eralization, the elliptic curve factoring algorithm (§3.2.4). The latter is successful in
factoring n if a randomly chosen number of the same size as p (more precisely, this
number is the order of a randomly selected elliptic curve defined over Zp) has only
small prime factors. Additionally, it has been shown that the chances of a cycling at-
tack succeeding are negligible if p and q are randomly chosen (cf. §8.2.2(vii)). Thus,
strong primes offer little protection beyond that offered by random primes. Given the
current state of knowledge of factoring algorithms, there is no compelling reason for
requiring the use of strong primes in RSA key generation. On the other hand, they
are no less secure than random primes, and require only minimal additional running
time to compute; thus there is little real additional cost in using them.

8.9 Note (small encryption exponents)

(i) If the encryption exponent e is chosen at random, then RSA encryption using the re-
peated square-and-multiply algorithm (Algorithm 2.143) takes k modular squarings
and an expected k/2 (less with optimizations) modular multiplications, where k is
the bitlength of the modulus n. Encryption can be sped up by selecting e to be small
and/or by selecting e with a small number of 1’s in its binary representation.

(ii) The encryption exponent e = 3 is commonly used in practice; in this case, it is nec-
essary that neither p−1 nor q−1 be divisible by 3. This results in a very fast encryp-
tion operation since encryption only requires 1 modular multiplication and 1 modular
squaring. Another encryption exponent used in practice is e = 216 + 1 = 65537.
This number has only two 1’s in its binary representation, and so encryption using
the repeated square-and-multiply algorithm requires only 16 modular squarings and
1 modular multiplication. The encryption exponent e = 216 + 1 has the advantage
over e = 3 in that it resists the kind of attack discussed in §8.2.2(ii), since it is un-
likely the same message will be sent to 216+1 recipients. But see also Coppersmith’s
attacks mentioned on pages 313–314.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

292 Ch. 8 Public-Key Encryption

8.3 Rabin public-key encryption

A desirable property of any encryption scheme is a proof that breaking it is as difficult as
solving a computational problem that is widely believed to be difficult, such as integer fac-
torization or the discrete logarithm problem. While it is widely believed that breaking the
RSA encryption scheme is as difficult as factoring the modulus n, no such equivalence has
been proven. The Rabin public-key encryption scheme was the first example of a provably
secure public-key encryption scheme – the problem faced by a passive adversary of recov-
ering plaintext from some given ciphertext is computationally equivalent to factoring.

8.10 Algorithm Key generation for Rabin public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:

1. Generate two large random (and distinct) primes p and q, each roughly the same size.
2. Compute n = pq.
3. A’s public key is n; A’s private key is (p, q).

8.11 Algorithm Rabin public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:

(a) Obtain A’s authentic public key n.
(b) Represent the message as an integerm in the range {0, 1, . . . , n− 1}.
(c) Compute c = m2 mod n.
(d) Send the ciphertext c to A.

2. Decryption. To recover plaintextm from c, A should do the following:

(a) Use Algorithm 3.44 to find the four square rootsm1,m2,m3, andm4 of cmod-
ulo n.2 (See also Note 8.12.)

(b) The message sent was eitherm1, m2, m3, orm4. A somehow (cf. Note 8.14)
decides which of these ism.

8.12 Note (finding square roots of c modulo n = pq when p ≡ q ≡ 3 (mod 4)) If p and q are
both chosen to be ≡ 3 (mod 4), then Algorithm 3.44 for computing the four square roots
of c modulo n simplifies as follows:

1. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers a and b sat-
isfying ap+ bq = 1. Note that a and b can be computed once and for all during the
key generation stage (Algorithm 8.10).

2. Compute r = c(p+1)/4 mod p.
3. Compute s = c(q+1)/4 mod q.
4. Compute x = (aps+ bqr) mod n.
5. Compute y = (aps− bqr) mod n.
6. The four square roots of c modulo n are x, −x mod n, y, and −y mod n.

2In the very unlikely case that gcd(m,n) 6= 1, the ciphertext c does not have four distinct square roots modulo
n, but rather only one or two.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.3 Rabin public-key encryption 293

8.13 Note (security of Rabin public-key encryption)

(i) The task faced by a passive adversary is to recover plaintextm from the correspond-
ing ciphertext c. This is precisely the SQROOT problem of §3.5.2. Recall (Fact 3.46)
that the problems of factoring n and computing square roots modulo n are computa-
tionally equivalent. Hence, assuming that factoring n is computationally intractable,
the Rabin public-key encryption scheme is provably secure against a passive adver-
sary.

(ii) While provably secure against a passive adversary, the Rabin public-key encryption
scheme succumbs to a chosen-ciphertext attack (but see Note 8.14(ii)). Such an at-
tack can be mounted as follows. The adversary selects a random integerm ∈ Z∗n and
computes c = m2 mod n. The adversary then presents c toA’s decryption machine,
which decrypts c and returns some plaintext y. Since A does not knowm, andm is
randomly chosen, the plaintext y is not necessarily the same asm. With probability
1
2 , y 6≡ ±m mod n, in which case gcd(m− y, n) is one of the prime factors of n. If
y ≡ ±m mod n, then the attack is repeated with a newm.3

(iii) The Rabin public-key encryption scheme is susceptible to attacks similar to those on
RSA described in §8.2.2(ii), §8.2.2(iii), and §8.2.2(v). As is the case with RSA, at-
tacks (ii) and (iii) can be circumvented by salting the plaintext message, while attack
(v) can be avoided by adding appropriate redundancy prior to encryption.

8.14 Note (use of redundancy)

(i) A drawback of Rabin’s public-key scheme is that the receiver is faced with the task
of selecting the correct plaintext from among four possibilities. This ambiguity in
decryption can easily be overcome in practice by adding prespecified redundancy to
the original plaintext prior to encryption. (For example, the last 64 bits of the message
may be replicated.) Then, with high probability, exactly one of the four square roots
m1, m2, m3, m4 of a legitimate ciphertext c will possess this redundancy, and the
receiver will select this as the intended plaintext. If none of the square roots of c
possesses this redundancy, then the receiver should reject c as fraudulent.

(ii) If redundancy is used as above, Rabin’s scheme is no longer susceptible to the chosen-
ciphertext attack of Note 8.13(ii). If an adversary selects a messagem having the re-
quired redundancy and gives c = m2 mod n to A’s decryption machine, with very
high probability the machine will return the plaintextm itself to the adversary (since
the other three square roots of cwill most likely not contain the required redundancy),
providing no new information. On the other hand, if the adversary selects a message
m which does not contain the required redundancy, then with high probability none
of the four square roots of c = m2 mod n will possess the required redundancy. In
this case, the decryption machine will fail to decrypt c and thus will not provide a re-
sponse to the adversary. Note that the proof of equivalence of breaking the modified
scheme by a passive adversary to factoring is no longer valid. However, if the natu-
ral assumption is made that Rabin decryption is composed of two processes, the first
which finds the four square roots of c mod n, and the second which selects the distin-
guished square root as the plaintext, then the proof of equivalence holds. Hence, Ra-
bin public-key encryption, suitably modified by adding redundancy, is of great prac-
tical interest.

3This chosen-ciphertext attack is an execution of the constructive proof of the equivalence of factoring n and
the SQROOT problem (Fact 3.46), whereA’s decryption machine is used instead of the hypothetical polynomial-
time algorithm for solving the SQROOT problem in the proof.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

294 Ch. 8 Public-Key Encryption

8.15 Example (Rabin public-key encryption with artificially small parameters)
Key generation. Entity A chooses the primes p = 277, q = 331, and computes n = pq =
91687. A’s public key is n = 91687, while A’s private key is (p = 277, q = 331).
Encryption. Suppose that the last six bits of original messages are required to be repli-
cated prior to encryption (cf. Note 8.14(i)). In order to encrypt the 10-bit message m =
1001111001,B replicates the last six bits ofm to obtain the 16-bit message
m = 1001111001111001, which in decimal notation ism = 40569. B then computes

c = m2 mod n = 405692 mod 91687 = 62111

and sends this to A.
Decryption. To decrypt c, A uses Algorithm 3.44 and her knowledge of the factors of n to
compute the four square roots of c mod n:

m1 = 69654, m2 = 22033, m3 = 40569, m4 = 51118,

which in binary are

m1 = 10001000000010110, m2 = 101011000010001,

m3 = 1001111001111001, m4 = 1100011110101110.

Since onlym3 has the required redundancy,A decrypts c to m3 and recovers the original
messagem = 1001111001. �

8.16 Note (efficiency) Rabin encryption is an extremely fast operation as it only involves a sin-
gle modular squaring. By comparison, RSA encryption with e = 3 takes one modular mul-
tiplication and one modular squaring. Rabin decryption is slower than encryption, but com-
parable in speed to RSA decryption.

8.4 ElGamal public-key encryption

The ElGamal public-key encryption scheme can be viewed as Diffie-Hellman key agree-
ment (§12.6.1) in key transfer mode (cf. Note 8.23(i)). Its security is based on the intractabil-
ity of the discrete logarithm problem (see §3.6) and the Diffie-Hellman problem (§3.7). The
basic ElGamal and generalized ElGamal encryption schemes are described in this section.

8.4.1 Basic ElGamal encryption

8.17 Algorithm Key generation for ElGamal public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:

1. Generate a large random prime p and a generator α of the multiplicative groupZ∗p of
the integers modulo p (using Algorithm 4.84).

2. Select a random integer a, 1 ≤ a ≤ p − 2, and compute αa mod p (using Algo-
rithm 2.143).

3. A’s public key is (p, α, αa); A’s private key is a.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.4 ElGamal public-key encryption 295

8.18 Algorithm ElGamal public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:

(a) Obtain A’s authentic public key (p, α, αa).
(b) Represent the message as an integerm in the range {0, 1, . . . , p− 1}.
(c) Select a random integer k, 1 ≤ k ≤ p− 2.
(d) Compute γ = αk mod p and δ = m · (αa)k mod p.
(e) Send the ciphertext c = (γ, δ) to A.

2. Decryption. To recover plaintextm from c, A should do the following:

(a) Use the private key a to compute γp−1−a mod p (note: γp−1−a = γ−a =
α−ak).

(b) Recoverm by computing (γ−a) · δ mod p.

Proof that decryption works. The decryption of Algorithm 8.18 allows recovery of original
plaintext because

γ−a · δ ≡ α−akmαak ≡ m (mod p).

8.19 Example (ElGamal encryption with artificially small parameters)
Key generation. Entity A selects the prime p = 2357 and a generator α = 2 of Z∗2357. A
chooses the private key a = 1751 and computes

αa mod p = 21751 mod 2357 = 1185.

A’s public key is (p = 2357, α = 2, αa = 1185).
Encryption. To encrypt a message m = 2035, B selects a random integer k = 1520 and
computes

γ = 21520 mod 2357 = 1430

and

δ = 2035 · 11851520 mod 2357 = 697.

B sends γ = 1430 and δ = 697 to A.
Decryption. To decrypt,A computes

γp−1−a = 1430605 mod 2357 = 872,

and recoversm by computing

m = 872 · 697 mod 2357 = 2035. �

8.20 Note (common system-wide parameters) All entities may elect to use the same prime p
and generator α, in which case p and α need not be published as part of the public key.
This results in public keys of smaller sizes. An additional advantage of having a fixed base
α is that exponentiation can then be expedited via precomputations using the techniques
described in §14.6.3. A potential disadvantage of common system-wide parameters is that
larger moduli p may be warranted (cf. Note 8.24).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

296 Ch. 8 Public-Key Encryption

8.21 Note (efficiency of ElGamal encryption)

(i) The encryption process requires two modular exponentiations, namelyαk mod p and
(αa)k mod p. These exponentiations can be sped up by selecting random exponents
k having some additional structure, for example, having low Hamming weights. Care
must be taken that the possible number of exponents is large enough to preclude a
search via a baby-step giant-step algorithm (cf. Note 3.59).

(ii) A disadvantage of ElGamal encryption is that there is message expansion by a factor
of 2. That is, the ciphertext is twice as long as the corresponding plaintext.

8.22 Remark (randomized encryption) ElGamal encryption is one of many encryption schemes
which utilizes randomization in the encryption process. Others include McEliece encryp-
tion (§8.5), and Goldwasser-Micali (§8.7.1), and Blum-Goldwasser (§8.7.2) probabilistic
encryption. Deterministic encryption schemes such as RSA may also employ randomiza-
tion in order to circumvent some attacks (e.g., see §8.2.2(ii) and §8.2.2(iii)). The fundamen-
tal idea behind randomized encryption (see Definition 7.3) techniques is to use randomiza-
tion to increase the cryptographic security of an encryption process through one or more of
the following methods:

(i) increasing the effective size of the plaintext message space;
(ii) precluding or decreasing the effectiveness of chosen-plaintext attacks by virtue of a

one-to-many mapping of plaintext to ciphertext; and
(iii) precluding or decreasing the effectiveness of statistical attacks by leveling the a priori

probability distribution of inputs.

8.23 Note (security of ElGamal encryption)

(i) The problem of breaking the ElGamal encryption scheme, i.e., recoveringm given
p, α, αa, γ, and δ, is equivalent to solving the Diffie-Hellman problem (see §3.7). In
fact, the ElGamal encryption scheme can be viewed as simply comprising a Diffie-
Hellman key exchange to determine a session key αak , and then encrypting the mes-
sage by multiplication with that session key. For this reason, the security of the El-
Gamal encryption scheme is said to be based on the discrete logarithm problem in
Z
∗
p, although such an equivalence has not been proven.

(ii) It is critical that different random integers k be used to encrypt different messages.
Suppose the same k is used to encrypt two messages m1 and m2 and the resulting
ciphertext pairs are (γ1, δ1) and (γ2, δ2). Then δ1/δ2 = m1/m2, and m2 could be
easily computed ifm1 were known.

8.24 Note (recommended parameter sizes) Given the latest progress on the discrete logarithm
problem in Z∗p (§3.6), a 512-bit modulus p provides only marginal security from concerted
attack. As of 1996, a modulus p of at least 768 bits is recommended. For long-term secu-
rity, 1024-bit or larger moduli should be used. For common system-wide parameters (cf.
Note 8.20) even larger key sizes may be warranted. This is because the dominant stage
in the index-calculus algorithm (§3.6.5) for discrete logarithms in Z∗p is the precomputa-
tion of a database of factor base logarithms, following which individual logarithms can be
computed relatively quickly. Thus computing the database of logarithms for one particular
modulus p will compromise the secrecy of all private keys derived using p.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.4 ElGamal public-key encryption 297

8.4.2 Generalized ElGamal encryption

The ElGamal encryption scheme is typically described in the setting of the multiplicative
group Z∗p, but can be easily generalized to work in any finite cyclic groupG.

As with ElGamal encryption, the security of the generalized ElGamal encryption sch-
eme is based on the intractability of the discrete logarithm problem in the group G. The
groupG should be carefully chosen to satisfy the following two conditions:

1. for efficiency, the group operation in G should be relatively easy to apply; and
2. for security, the discrete logarithm problem in G should be computationally infeasi-

ble.

The following is a list of groups that appear to meet these two criteria, of which the first
three have received the most attention.

1. The multiplicative group Z∗p of the integers modulo a prime p.
2. The multiplicative group F∗2m of the finite field F2m of characteristic two.
3. The group of points on an elliptic curve over a finite field.
4. The multiplicative group F∗q of the finite field Fq , where q = pm, p a prime.
5. The group of units Z∗n, where n is a composite integer.
6. The jacobian of a hyperelliptic curve defined over a finite field.
7. The class group of an imaginary quadratic number field.

8.25 Algorithm Key generation for generalized ElGamal public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:

1. Select an appropriate cyclic groupG of order n, with generatorα. (It is assumed here
that G is written multiplicatively.)

2. Select a random integer a, 1 ≤ a ≤ n− 1, and compute the group element αa.
3. A’s public key is (α, αa), together with a description of how to multiply elements in
G; A’s private key is a.

8.26 Algorithm Generalized ElGamal public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:

(a) Obtain A’s authentic public key (α, αa).
(b) Represent the message as an elementm of the groupG.
(c) Select a random integer k, 1 ≤ k ≤ n− 1.
(d) Compute γ = αk and δ = m · (αa)k.
(e) Send the ciphertext c = (γ, δ) to A.

2. Decryption. To recover plaintextm from c, A should do the following:

(a) Use the private key a to compute γa and then compute γ−a.
(b) Recoverm by computing (γ−a) · δ.

8.27 Note (common system-wide parameters) All entities may elect to use the same cyclic
groupG and generator α, in which case α and the description of multiplication in G need
not be published as part of the public key (cf. Note 8.20).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

298 Ch. 8 Public-Key Encryption

8.28 Example (ElGamal encryption using the multiplicative group of F2m , with artificially
small parameters)
Key generation. EntityA selects the groupG to be the multiplicative group of the finite field
F24 , whose elements are represented by the polynomials over F2 of degree less than 4, and
where multiplication is performed modulo the irreducible polynomial f(x) = x4 + x+ 1
(cf. Example 2.231). For convenience, a field element a3x3 + a2x2 + a1x + a0 is repre-
sented by the binary string (a3a2a1a0). The group G has order n = 15 and a generator is
α = (0010).
A chooses the private key a = 7 and computes αa = α7 = (1011). A’s public key is
αa = (1011) (together with α = (0010) and the polynomial f(x) which defines the mul-
tiplication in G, if these parameters are not common to all entities).
Encryption. To encrypt a message m = (1100), B selects a random integer k = 11 and
computes γ = α11 = (1110), (αa)11 = (0100), and δ = m · (αa)11 = (0101). B sends
γ = (1110) and δ = (0101) to A.
Decryption. To decrypt, A computes γa = (0100), (γa)−1 = (1101) and finally recovers
m by computingm = (γ−a) · δ = (1100). �

8.5 McEliece public-key encryption

The McEliece public-key encryption scheme is based on error-correcting codes. The idea
behind this scheme is to first select a particular code for which an efficient decoding algo-
rithm is known, and then to disguise the code as a general linear code (see Note 12.36).
Since the problem of decoding an arbitrary linear code is NP-hard (Definition 2.73), a de-
scription of the original code can serve as the private key, while a description of the trans-
formed code serves as the public key.

The McEliece encryption scheme (when used with Goppa codes) has resisted crypt-
analysis to date. It is also notable as being the first public-key encryption scheme to use
randomization in the encryption process. Although very efficient, the McEliece encryption
scheme has received little attention in practice because of the very large public keys (see
Remark 8.33).

8.29 Algorithm Key generation for McEliece public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.

1. Integers k, n, and t are fixed as common system parameters.
2. Each entity A should perform steps 3 – 7.
3. Choose a k×n generator matrixG for a binary (n, k)-linear code which can correct
t errors, and for which an efficient decoding algorithm is known. (See Note 12.36.)

4. Select a random k × k binary non-singular matrix S.
5. Select a random n× n permutation matrix P .
6. Compute the k × n matrix Ĝ = SGP .
7. A’s public key is (Ĝ, t); A’s private key is (S,G, P).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.5 McEliece public-key encryption 299

8.30 Algorithm McEliece public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:
(a) Obtain A’s authentic public key (Ĝ, t).
(b) Represent the message as a binary stringm of length k.
(c) Choose a random binary error vector z of length n having at most t 1’s.
(d) Compute the binary vector c = mĜ+ z.
(e) Send the ciphertext c to A.

2. Decryption. To recover plaintextm from c, A should do the following:
(a) Compute ĉ = cP−1, where P−1 is the inverse of the matrix P .
(b) Use the decoding algorithm for the code generated by G to decode ĉ to m̂.
(c) Computem = m̂S−1.

Proof that decryption works. Since

ĉ = cP−1 = (mĜ+ z)P−1 = (mSGP + z)P−1 = (mS)G+ zP−1,

and zP−1 is a vector with at most t 1’s, the decoding algorithm for the code generated by
G corrects ĉ to m̂ = mS. Finally, m̂S−1 = m, and, hence, decryption works.

A special type of error-correcting code, called a Goppa code, may be used in step 3 of
the key generation. For each irreducible polynomial g(x) of degree t over F2m , there exists
a binary Goppa code of length n = 2m and dimension k ≥ n −mt capable of correcting
any pattern of t or fewer errors. Furthermore, efficient decoding algorithms are known for
such codes.

8.31 Note (security of McEliece encryption) There are two basic kinds of attacks known.

(i) From the public information, an adversary may try to compute the keyG or a keyG′

for a Goppa code equivalent to the one with generator matrixG. There is no efficient
method known for accomplishing this.

(ii) An adversary may try to recover the plaintextm directly given some ciphertext c. The
adversary picks k columns at random from Ĝ. If Ĝk, ck and zk denote the restriction
of Ĝ, c and z, respectively, to these k columns, then (ck+zk) = mĜk. If zk = 0 and
if Ĝk is non-singular, then m can be recovered by solving the system of equations
ck = mĜk. Since the probability that zk = 0, i.e., the selected k bits were not in
error, is only

(
n−t
k

)
/
(
n
k

)
, the probability of this attack succeeding is negligibly small.

8.32 Note (recommended parameter sizes) The original parameters suggested by McEliece
were n = 1024, t = 50, and k ≥ 524. Based on the security analysis (Note 8.31), an
optimum choice of parameters for the Goppa code which maximizes the adversary’s work
factor appears to be n = 1024, t = 38, and k ≥ 644.

8.33 Remark (McEliece encryption in practice) Although the encryption and decryption oper-
ations are relatively fast, the McEliece scheme suffers from the drawback that the public
key is very large. A (less significant) drawback is that there is message expansion by a fac-
tor of n/k. For the recommended parameters n = 1024, t = 38, k ≥ 644, the public key is
about 219 bits in size, while the message expansion factor is about 1.6. For these reasons,
the scheme receives little attention in practice.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

300 Ch. 8 Public-Key Encryption

8.6 Knapsack public-key encryption

Knapsack public-key encryption schemes are based on the subset sum problem, which is
NP-complete (see §2.3.3 and §3.10). The basic idea is to select an instance of the subset
sum problem that is easy to solve, and then to disguise it as an instance of the general subset
sum problem which is hopefully difficult to solve. The original knapsack set can serve as
the private key, while the transformed knapsack set serves as the public key.

The Merkle-Hellman knapsack encryption scheme (§8.6.1) is important for historical
reasons, as it was the first concrete realization of a public-key encryption scheme. Many
variations have subsequently been proposed but most, including the original, have been
demonstrated to be insecure (see Note 8.40), a notable exception being the Chor-Rivest
knapsack scheme (§8.6.2).

8.6.1 Merkle-Hellman knapsack encryption

The Merkle-Hellman knapsack encryption scheme attempts to disguise an easily solved in-
stance of the subset sum problem, called a superincreasing subset sum problem, by modular
multiplication and a permutation. It is however not recommended for use (see Note 8.40).

8.34 Definition A superincreasing sequence is a sequence (b1, b2, . . . , bn) of positive integers
with the property that bi >

∑i−1
j=1 bj for each i, 2 ≤ i ≤ n.

Algorithm 8.35 efficiently solves the subset sum problem for superincreasing sequences.

8.35 Algorithm Solving a superincreasing subset sum problem

INPUT: a superincreasing sequence (b1, b2, . . . , bn) and an integer s which is the sum of a
subset of the bi.
OUTPUT: (x1, x2, . . . , xn) where xi ∈ {0, 1}, such that

∑n
i=1 xibi = s.

1. i←n.
2. While i ≥ 1 do the following:

2.1 If s ≥ bi then xi←1 and s←s− bi. Otherwise xi←0.
2.2 i←i− 1.

3. Return((x1, x2, . . . , xn)).

8.36 Algorithm Key generation for basic Merkle-Hellman knapsack encryption

SUMMARY: each entity creates a public key and a corresponding private key.
1. An integer n is fixed as a common system parameter.
2. Each entity A should perform steps 3 – 7.
3. Choose a superincreasing sequence (b1, b2, . . . , bn) and modulusM such thatM >
b1 + b2 + · · ·+ bn.

4. Select a random integerW , 1 ≤W ≤M − 1, such that gcd(W,M) = 1.
5. Select a random permutation π of the integers {1, 2, . . . , n}.
6. Compute ai =Wbπ(i) modM for i = 1, 2, . . . , n.
7. A’s public key is (a1, a2, . . . , an); A’s private key is (π,M,W, (b1, b2, . . . , bn)).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.6 Knapsack public-key encryption 301

8.37 Algorithm Basic Merkle-Hellman knapsack public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:

(a) Obtain A’s authentic public key (a1, a2, . . . , an).
(b) Represent the messagem as a binary string of length n,m = m1m2 · · ·mn.
(c) Compute the integer c = m1a1 +m2a2 + · · ·+mnan.
(d) Send the ciphertext c to A.

2. Decryption. To recover plaintextm from c, A should do the following:

(a) Compute d =W−1c modM .
(b) By solving a superincreasing subset sum problem (Algorithm 8.35), find inte-

gers r1, r2, . . . , rn, ri ∈ {0, 1}, such that d = r1b1 + r2b2 + · · ·+ rnbn.
(c) The message bits aremi = rπ(i), i = 1, 2, . . . , n.

Proof that decryption works. The decryption of Algorithm 8.37 allows recovery of original
plaintext because

d ≡ W−1c ≡ W−1
n∑
i=1

miai ≡
n∑
i=1

mibπ(i) (mod M).

Since 0 ≤ d < M , d =
∑n
i=1mibπ(i) modM , and hence the solution of the superincreas-

ing subset sum problem in step (b) of the decryption gives the message bits, after application
of the permutation π.

8.38 Example (basic Merkle-Hellman knapsack encryption with artificially small parameters)
Key generation. Let n = 6. EntityA chooses the superincreasing sequence (12, 17, 33, 74,
157, 316), M = 737, W = 635, and the permutation π of {1, 2, 3, 4, 5, 6} defined by
π(1) = 3, π(2) = 6, π(3) = 1, π(4) = 2, π(5) = 5, and π(6) = 4. A’s public key is the
knapsack set (319, 196, 250, 477, 200, 559), whileA’s private key is (π,M,W, (12, 17, 33,
74, 157, 316)).
Encryption. To encrypt the messagem = 101101,B computes

c = 319 + 250 + 477 + 559 = 1605

and sends this to A.
Decryption. To decrypt, A computes d = W−1c modM = 136, and solves the superin-
creasing subset sum problem

136 = 12r1 + 17r2 + 33r3 + 74r4 + 157r5 + 316r6

to get 136 = 12 + 17 + 33 + 74. Hence, r1 = 1, r2 = 1, r3 = 1, r4 = 1, r5 = 0, r6 = 0,
and application of the permutation π yields the message bitsm1 = r3 = 1,m2 = r6 = 0,
m3 = r1 = 1,m4 = r2 = 1,m5 = r5 = 0,m6 = r4 = 1. �

Multiple-iterated Merkle-Hellman knapsack encryption

One variation of the basic Merkle-Hellman scheme involves disguising the easy superin-
creasing sequence by a series of modular multiplications. The key generation for this vari-
ation is as follows.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

302 Ch. 8 Public-Key Encryption

8.39 Algorithm Key generation for multiple-iterated Merkle-Hellman knapsack encryption

SUMMARY: each entity creates a public key and a corresponding private key.

1. Integers n and t are fixed as common system parameters.
2. Each entity A should perform steps 3 – 6.

3. Choose a superincreasing sequence (a(0)1 , a
(0)
2 , . . . , a

(0)
n).

4. For j from 1 to t do the following:

4.1 Choose a modulusMj withMj > a
(j−1)
1 + a

(j−1)
2 + · · ·+ a(j−1)n .

4.2 Select a random integerWj , 1 ≤Wj ≤Mj − 1, such that gcd(Wj ,Mj) = 1.

4.3 Compute a(j)i = a
(j−1)
i Wj modMj for i = 1, 2, . . . , n.

5. Select a random permutation π of the integers {1, 2, . . . , n}.

6. A’s public key is (a1, a2, . . . , an), where ai = a
(t)
π(i) for i = 1, 2, . . . , n; A’s private

key is (π,M1, . . . ,Mt,W1, . . . ,Wt, a
(0)
1 , a

(0)
2 , . . . , a

(0)
n).

Encryption is performed in the same way as in the basic Merkle-Hellman scheme (Al-
gorithm 8.37). Decryption is performed by successively computing dj = W

−1
j dj+1 mod

Mj for j = t, t−1, . . . , 1, where dt+1 = c. Finally, the superincreasing subset sum prob-

lem d1 = r1a
(0)
1 +r2a

(0)
2 + · · ·+rna

(0)
n is solved for ri, and the message bits are recovered

after application of the permutation π.

8.40 Note (insecurity of Merkle-Hellman knapsack encryption)

(i) A polynomial-time algorithm for breaking the basic Merkle-Hellman scheme is
known. Given the public knapsack set, this algorithm finds a pair of integersU ′,M ′

such that U ′/M ′ is close to U/M (whereW andM are part of the private key, and
U =W−1 modM) and such that the integers b′i = U

′ai modM , 1 ≤ i ≤ n, form
a superincreasing sequence. This sequence can then be used by an adversary in place
of (b1, b2, . . . , bn) to decrypt messages.

(ii) The most powerful general attack known on knapsack encryption schemes is the tech-
nique discussed in §3.10.2 which reduces the subset sum problem to the problem of
finding a short vector in a lattice. It is typically successful if the density (see Defi-
nition 3.104) of the knapsack set is less than 0.9408. This is significant because the
density of a Merkle-Hellman knapsack set must be less than 1, since otherwise there
will in general be many subsets of the knapsack set with the same sum, in which case
some ciphertexts will not be uniquely decipherable. Moreover, since each iteration in
the multiple-iterated scheme lowers the density, this attack will succeed if the knap-
sack set has been iterated a sufficient number of times.

Similar techniques have since been used to break most knapsacks schemes that have
been proposed, including the multiple-iterated Merkle-Hellman scheme. The most promi-
nent knapsack scheme that has resisted such attacks to date is the Chor-Rivest scheme (but
see Note 8.44).

8.6.2 Chor-Rivest knapsack encryption

The Chor-Rivest scheme is the only known knapsack public-key encryption scheme that
does not use some form of modular multiplication to disguise an easy subset sum problem.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.6 Knapsack public-key encryption 303

8.41 Algorithm Key generation for Chor-Rivest public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:

1. Select a finite field Fq of characteristic p, where q = ph, p ≥ h, and for which the
discrete logarithm problem is feasible (see Note 8.45(ii)).

2. Select a random monic irreducible polynomial f(x) of degree h over Zp (using Al-
gorithm 4.70). The elements of Fq will be represented as polynomials in Zp[x] of
degree less than h, with multiplication performed modulo f(x).

3. Select a random primitive element g(x) of the field Fq (using Algorithm 4.80).
4. For each ground field element i ∈ Zp, find the discrete logarithm ai = logg(x)(x+ i)

of the field element (x+ i) to the base g(x).
5. Select a random permutation π on the set of integers {0, 1, 2, . . . , p− 1}.
6. Select a random integer d, 0 ≤ d ≤ ph − 2.
7. Compute ci = (aπ(i) + d) mod (ph − 1) , 0 ≤ i ≤ p− 1.
8. A’s public key is ((c0, c1, . . . , cp−1), p, h); A’s private key is (f(x), g(x), π, d).

8.42 Algorithm Chor-Rivest public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:

(a) Obtain A’s authentic public key ((c0, c1, . . . , cp−1), p, h).
(b) Represent the message m as a binary string of length blg

(
p
h

)
c, where

(
p
h

)
is a

binomial coefficient (Definition 2.17).
(c) Consider m as the binary representation of an integer. Transform this integer

into a binary vectorM = (M0,M1, . . . ,Mp−1) of length p having exactly h
1’s as follows:

i. Set l←h.
ii. For i from 1 to p do the following:

Ifm ≥
(
p−i
l

)
then setMi−1←1, m←m −

(
p−i
l

)
, l←l − 1. Otherwise,

setMi−1←0. (Note:
(
n
0

)
= 1 for n ≥ 0;

(
0
l

)
= 0 for l ≥ 1.)

(d) Compute c =
∑p−1
i=0 Mici mod (p

h − 1).
(e) Send the ciphertext c to A.

2. Decryption. To recover plaintextm from c, A should do the following:

(a) Compute r = (c− hd) mod (ph − 1).
(b) Compute u(x) = g(x)r mod f(x) (using Algorithm 2.227).
(c) Compute s(x) = u(x) + f(x), a monic polynomial of degree h over Zp.

(d) Factor s(x) into linear factors over Zp: s(x) =
∏h
j=1(x+ tj), where tj ∈ Zp

(cf. Note 8.45(iv)).
(e) Compute a binary vector M = (M0,M1, . . . ,Mp−1) as follows. The com-

ponents of M that are 1 have indices π−1(tj), 1 ≤ j ≤ h. The remaining
components are 0.

(f) The messagem is recovered fromM as follows:

i. Setm←0, l←h.
ii. For i from 1 to p do the following:

IfMi−1 = 1 then setm←m+
(
p−i
l

)
and l←l − 1.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

304 Ch. 8 Public-Key Encryption

Proof that decryption works. Observe that

u(x) = g(x)r mod f(x)

≡ g(x)c−hd ≡ g(x)(
∑p−1
i=0 Mici)−hd (mod f(x))

≡ g(x)(
∑p−1
i=0 Mi(aπ(i)+d))−hd ≡ g(x)

∑p−1
i=0 Miaπ(i) (mod f(x))

≡
p−1∏
i=0

[g(x)aπ(i)]Mi ≡
p−1∏
i=0

(x+ π(i))Mi (mod f(x)).

Since
∏p−1
i=0 (x + π(i))

Mi and s(x) are monic polynomials of degree h and are congruent
modulo f(x), it must be the case that

s(x) = u(x) + f(x) =

p−1∏
i=0

(x+ π(i))Mi .

Hence, theh roots of s(x) all lie inZp, and applyingπ−1 to these roots gives the coordinates
ofM that are 1.

8.43 Example (Chor-Rivest public-key encryption with artificially small parameters)
Key generation. Entity A does the following:

1. Selects p = 7 and h = 4.
2. Selects the irreducible polynomial f(x) = x4 + 3x3 + 5x2 + 6x + 2 of degree 4

over Z7. The elements of the finite field F74 are represented as polynomials in Z7[x]
of degree less than 4, with multiplication performed modulo f(x).

3. Selects the random primitive element g(x) = 3x3 + 3x2 + 6.
4. Computes the following discrete logarithms:

a0 = logg(x)(x) = 1028

a1 = logg(x)(x+ 1) = 1935

a2 = logg(x)(x+ 2) = 2054

a3 = logg(x)(x+ 3) = 1008

a4 = logg(x)(x+ 4) = 379

a5 = logg(x)(x+ 5) = 1780

a6 = logg(x)(x+ 6) = 223.

5. Selects the random permutationπ on {0, 1, 2, 3, 4, 5, 6}defined by π(0) = 6, π(1) =
4, π(2) = 0, π(3) = 2, π(4) = 1, π(5) = 5, π(6) = 3.

6. Selects the random integer d = 1702.
7. Computes

c0 = (a6 + d) mod 2400 = 1925

c1 = (a4 + d) mod 2400 = 2081

c2 = (a0 + d) mod 2400 = 330

c3 = (a2 + d) mod 2400 = 1356

c4 = (a1 + d) mod 2400 = 1237

c5 = (a5 + d) mod 2400 = 1082

c6 = (a3 + d) mod 2400 = 310.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.6 Knapsack public-key encryption 305

8. A’s public key is ((c0, c1, c2, c3, c4, c5, c6), p = 7, h = 4), while A’s private key is
(f(x), g(x), π, d).

Encryption. To encrypt a messagem = 22 for A, B does the following:

(a) Obtains authentic A’s public key.
(b) Representsm as a binary string of length 5: m = 10110. (Note that blg

(
7
4

)
c = 5.)

(c) Uses the method outlined in step 1(c) of Algorithm 8.42 to transformm to the binary
vectorM = (1, 0, 1, 1, 0, 0, 1) of length 7.

(d) Computes c = (c0 + c2 + c3 + c6) mod 2400 = 1521.
(e) Sends c = 1521 to A.

Decryption. To decrypt the ciphertext c = 1521, A does the following:

(a) Computes r = (c− hd) mod 2400 = 1913.
(b) Computes u(x) = g(x)1913 mod f(x) = x3 + 3x2 + 2x+ 5.
(c) Computes s(x) = u(x) + f(x) = x4 + 4x3 + x2 + x.
(d) Factors s(x) = x(x+ 2)(x+ 3)(x+ 6) (so t1 = 0, t2 = 2, t3 = 3, t4 = 6).
(e) The components ofM that are 1 have indices π−1(0) = 2, π−1(2) = 3, π−1(3) = 6,

and π−1(6) = 0. Hence,M = (1, 0, 1, 1, 0, 0, 1).
(f) Uses the method outlined in step 2(f) of Algorithm 8.42 to transformM to the integer
m = 22, thus recovering the original plaintext. �

8.44 Note (security of Chor-Rivest encryption)

(i) When the parameters of the system are carefully chosen (see Note 8.45 and page 318),
there is no feasible attack known on the Chor-Rivest encryption scheme. In partic-
ular, the density of the knapsack set (c0, c1, . . . , cp−1) is p/ lg(max ci), which is
large enough to thwart the low-density attacks on the general subset sum problem
(§3.10.2).

(ii) It is known that the system is insecure if portions of the private key are revealed, for
example, if g(x) and d in some representation of Fq are known, or if f(x) is known,
or if π is known.

8.45 Note (implementation)

(i) Although the Chor-Rivest scheme has been described only for the case p a prime, it
extends to the case where the base fieldZp is replaced by a field of prime power order.

(ii) In order to make the discrete logarithm problem feasible in step 1 of Algorithm 8.41,
the parameters p and h may be chosen so that q = ph − 1 has only small factors. In
this case, the Pohlig-Hellman algorithm (§3.6.4) can be used to efficiently compute
discrete logarithms in the finite field Fq .

(iii) In practice, the recommended size of the parameters are p ≈ 200 and h ≈ 25. One
particular choice of parameters originally suggested is p = 197 and h = 24; in this
case, the largest prime factor of 19724− 1 is 10316017, and the density of the knap-
sack set is about 1.077. Other parameter sets originally suggested are {p = 211, h =
24}, {p = 35, h = 24} (base field F35), and {p = 28, h = 25} (base field F28).

(iv) Encryption is a very fast operation. Decryption is much slower, the bottleneck being
the computation of u(x) in step 2b. The roots of s(x) in step 2d can be found simply
by trying all possibilities in Zp.

(v) A major drawback of the Chor-Rivest scheme is that the public key is fairly large,
namely, about (ph · lg p) bits. For the parameters p = 197 and h = 24, this is about
36000 bits.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

306 Ch. 8 Public-Key Encryption

(vi) There is message expansion by a factor of lg ph/ lg
(
p
h

)
. For p = 197 and h = 24,

this is 1.797.

8.7 Probabilistic public-key encryption

A minimal security requirement of an encryption scheme is that it must be difficult, in es-
sentially all cases, for a passive adversary to recover plaintext from the corresponding ci-
phertext. However, in some situations, it may be desirable to impose more stringent security
requirements.

The RSA, Rabin, and knapsack encryption schemes are deterministic in the sense that
under a fixed public key, a particular plaintextm is always encrypted to the same ciphertext
c. A deterministic scheme has some or all of the following drawbacks.

1. The scheme is not secure for all probability distributions of the message space. For
example, in RSA the messages 0 and 1 always get encrypted to themselves, and hence
are easy to detect.

2. It is sometimes easy to compute partial information about the plaintext from the ci-
phertext. For example, in RSA if c = me mod n is the ciphertext corresponding to
a plaintextm, then (

c

n

)
=

(
me

n

)
=

(
m

n

)e
=

(
m

n

)
since e is odd, and hence an adversary can easily gain one bit of information about
m, namely the Jacobi symbol

(
m
n

)
.

3. It is easy to detect when the same message is sent twice.

Of course, any deterministic encryption scheme can be converted into a randomized
scheme by requiring that a portion of each plaintext consist of a randomly generated bit-
string of a pre-specified length l. If the parameter l is chosen to be sufficiently large for the
purpose at hand, then, in practice, the attacks listed above are thwarted. However, the re-
sulting randomized encryption scheme is generally not provably secure against the different
kinds of attacks that one could conceive.

Probabilistic encryption utilizes randomness to attain a provable and very strong level
of security. There are two strong notions of security that one can strive to achieve.

8.46 Definition A public-key encryption scheme is said to be polynomially secure if no passive
adversary can, in expected polynomial time, select two plaintext messagesm1 andm2 and
then correctly distinguish between encryptions ofm1 andm2 with probability significantly
greater than 12 .

8.47 Definition A public-key encryption scheme is said to be semantically secure if, for all
probability distributions over the message space, whatever a passive adversary can compute
in expected polynomial time about the plaintext given the ciphertext, it can also compute
in expected polynomial time without the ciphertext.

Intuitively, a public-key encryption scheme is semantically secure if the ciphertext does
not leak any partial information whatsoever about the plaintext that can be computed in
expected polynomial time.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.7 Probabilistic public-key encryption 307

8.48 Remark (perfect secrecy vs. semantic security) In Shannon’s theory (see §1.13.3(i)), an
encryption scheme has perfect secrecy if a passive adversary, even with infinite computa-
tional resources, can learn nothing about the plaintext from the ciphertext, except possibly
its length. The limitation of this notion is that perfect secrecy cannot be achieved unless the
key is at least as long as the message. By contrast, the notion of semantic security can be
viewed as a polynomially bounded version of perfect secrecy — a passive adversary with
polynomially bounded computational resources can learn nothing about the plaintext from
the ciphertext. It is then conceivable that there exist semantically secure encryption sch-
emes where the keys are much shorter that the messages.

Although Definition 8.47 appears to be stronger than Definition 8.46, the next result
asserts that they are, in fact, equivalent.

8.49 Fact A public-key encryption scheme is semantically secure if and only if it is polynomi-
ally secure.

8.7.1 Goldwasser-Micali probabilistic encryption

The Goldwasser-Micali scheme is a probabilistic public-key system which is semantically
secure assuming the intractability of the quadratic residuosity problem (see §3.4).

8.50 Algorithm Key generation for Goldwasser-Micali probabilistic encryption

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:

1. Select two large random (and distinct) primes p and q, each roughly the same size.
2. Compute n = pq.
3. Select a y ∈ Zn such that y is a quadratic non-residue modulo n and the Jacobi sym-

bol
(
y
n

)
= 1 (y is a pseudosquare modulo n); see Remark 8.54.

4. A’s public key is (n, y); A’s private key is the pair (p, q).

8.51 Algorithm Goldwasser-Micali probabilistic public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:

(a) Obtain A’s authentic public key (n, y).
(b) Represent the messagem as a binary stringm = m1m2 · · ·mt of length t.
(c) For i from 1 to t do:

i. Pick an x ∈ Z∗n at random.
ii. Ifmi = 1 then set ci←yx2 mod n; otherwise set ci←x2 mod n.

(d) Send the t-tuple c = (c1, c2, . . . , ct) to A.

2. Decryption. To recover plaintextm from c, A should do the following:

(a) For i from 1 to t do:

i. Compute the Legendre symbol ei =
(
ci
p

)
(using Algorithm 2.149).

ii. If ei = 1 then setmi←0; otherwise setmi←1.

(b) The decrypted message ism = m1m2 · · ·mt.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

308 Ch. 8 Public-Key Encryption

Proof that decryption works. If a message bitmi is 0, then ci = x2 mod n is a quadratic
residue modulo n. If a message bit mi is 1, then since y is a pseudosquare modulo n,
ci = yx

2 mod n is also a pseudosquare modulo n. By Fact 2.137, ci is a quadratic residue
modulo n if and only if ci is a quadratic residue modulo p, or equivalently

(
ci
p

)
= 1. Since

A knows p, she can compute this Legendre symbol and hence recover the message bitmi.

8.52 Note (security of Goldwasser-Micali probabilistic encryption) Since x is selected at ran-
dom from Z∗n, x2 mod n is a random quadratic residue modulo n, and yx2 mod n is a ran-
dom pseudosquare modulo n. Hence, an eavesdropper sees random quadratic residues and
pseudosquares modulo n. Assuming that the quadratic residuosity problem is difficult, the
eavesdropper can do no better that guess each message bit. More formally, if the quadratic
residuosity problem is hard, then the Goldwasser-Micali probabilistic encryption scheme is
semantically secure.

8.53 Note (message expansion) A major disadvantage of the Goldwasser-Micali scheme is the
message expansion by a factor of lg n bits. Some message expansion is unavoidable in a
probabilistic encryption scheme because there are many ciphertexts corresponding to each
plaintext. Algorithm 8.56 is a major improvement of the Goldwasser-Micali scheme in that
the plaintext is only expanded by a constant factor.

8.54 Remark (finding pseudosquares) A pseudosquare y modulo n can be found as follows.
First find a quadratic non-residue a modulo p and a quadratic non-residue b modulo q (see
Remark 2.151). Then use Gauss’s algorithm (Algorithm 2.121) to compute the integer y,
0 ≤ y ≤ n− 1, satisfying the simultaneous congruences y ≡ a (mod p), y ≡ b (mod q).
Since y (≡ a (mod p)) is a quadratic non-residue modulo p, it is also a quadratic non-
residue modulo n (Fact 2.137). Also, by the properties of the Legendre and Jacobi symbols
(§2.4.5),

(
y
n

)
=
(
y
p

)(
y
q

)
= (−1)(−1) = 1. Hence, y is a pseudosquare modulo n.

8.7.2 Blum-Goldwasser probabilistic encryption

The Blum-Goldwasser probabilistic public-key encryption scheme is the most efficient
probabilistic encryption scheme known and is comparable to the RSA encryption scheme,
both in terms of speed and message expansion. It is semantically secure (Definition 8.47)
assuming the intractability of the integer factorization problem. It is, however, vulnerable
to a chosen-ciphertext attack (see Note 8.58(iii)). The scheme uses the Blum-Blum-Shub
generator (§5.5.2) to generate a pseudorandom bit sequence which is then XORed with the
plaintext. The resulting bit sequence, together with an encryption of the random seed used,
is transmitted to the receiver who uses his trapdoor information to recover the seed and sub-
sequently reconstruct the pseudorandom bit sequence and the plaintext.

8.55 Algorithm Key generation for Blum-Goldwasser probabilistic encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:

1. Select two large random (and distinct) primes p, q, each congruent to 3 modulo 4.
2. Compute n = pq.
3. Use the extended Euclidean algorithm (Algorithm 2.107) to compute integers a and
b such that ap+ bq = 1.

4. A’s public key is n; A’s private key is (p, q, a, b).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.7 Probabilistic public-key encryption 309

8.56 Algorithm Blum-Goldwasser probabilistic public-key encryption

SUMMARY: B encrypts a messagem for A, which A decrypts.

1. Encryption. B should do the following:

(a) Obtain A’s authentic public key n.
(b) Let k = blg nc and h = blg kc. Represent the message m as a string m =
m1m2 · · ·mt of length t, where eachmi is a binary string of length h.

(c) Select as a seed x0, a random quadratic residue modulo n. (This can be done
by selecting a random integer r ∈ Z∗n and setting x0←r2 mod n.)

(d) For i from 1 to t do the following:

i. Compute xi = x2i−1 mod n.
ii. Let pi be the h least significant bits of xi.

iii. Compute ci = pi ⊕mi.

(e) Compute xt+1 = x2t mod n.
(f) Send the ciphertext c = (c1, c2, . . . , ct, xt+1) to A.

2. Decryption. To recover plaintextm from c, A should do the following:

(a) Compute d1 = ((p+ 1)/4)t+1 mod (p− 1).
(b) Compute d2 = ((q + 1)/4)t+1 mod (q − 1).
(c) Compute u = xd1t+1 mod p.

(d) Compute v = xd2t+1 mod q.
(e) Compute x0 = vap+ ubq mod n.
(f) For i from 1 to t do the following:

i. Compute xi = x2i−1 mod n.
ii. Let pi be the h least significant bits of xi.

iii. Computemi = pi ⊕ ci.

Proof that decryption works. Since xt is a quadratic residue modulo n, it is also a quadratic
residue modulo p; hence, x(p−1)/2t ≡ 1 (mod p). Observe that

x
(p+1)/4
t+1 ≡ (x2t)

(p+1)/4 ≡ x(p+1)/2t ≡ x(p−1)/2t xt ≡ xt (mod p).

Similarly, x(p+1)/4t ≡ xt−1 (mod p) and so

x
((p+1)/4)2

t+1 ≡ xt−1 (mod p).

Repeating this argument yields

u ≡ xd1t+1 ≡ x
((p+1)/4)t+1

t+1 ≡ x0 (mod p).

Analogously,

v ≡ xd2t+1 ≡ x0 (mod q).

Finally, since ap + bq = 1, vap + ubq ≡ x0 (mod p) and vap + ubq ≡ x0 (mod q).
Hence, x0 = vap+ ubq mod n, and A recovers the same random seed that B used in the
encryption, and consequently also recovers the original plaintext.

8.57 Example (Blum-Goldwasser probabilistic encryption with artificially small parameters)
Key generation. EntityA selects the primes p = 499, q = 547, each congruent to 3modulo
4, and computes n = pq = 272953. Using the extended Euclidean algorithm,A computes

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

310 Ch. 8 Public-Key Encryption

the integers a = −57, b = 52 satisfying ap+ bq = 1. A’s public key is n = 272953, while
A’s private key is (p, q, a, b).
Encryption. The parameters k and h have the values 18 and 4, respectively. B represents
the messagem as a stringm1m2m3m4m5 (t = 5) wherem1 = 1001,m2 = 1100,m3 =
0001,m4 = 0000,m5 = 1100. B then selects a random quadratic residue x0 = 159201
(= 3992 mod n), and computes:

i xi = x
2
i−1 mod n pi ci = pi ⊕mi

1 180539 1011 0010

2 193932 1100 0000

3 245613 1101 1100

4 130286 1110 1110

5 40632 1000 0100

and x6 = x25 mod n = 139680. B sends the ciphertext

c = (0010, 0000, 1100, 1110, 0100, 139680)

to A.
Decryption. To decrypt c, A computes

d1 = ((p+ 1)/4)
6 mod (p− 1) = 463

d2 = ((q + 1)/4)
6 mod (q − 1) = 337

u = x4636 mod p = 20

v = x3376 mod q = 24

x0 = vap+ ubq mod n = 159201.

Finally, A uses x0 to construct the xi and pi just as B did for encryption, and recovers the
plaintextmi by XORing the pi with the ciphertext blocks ci. �

8.58 Note (security of Blum-Goldwasser probabilistic encryption)
(i) Observe first that n is a Blum integer (Definition 2.156). An eavesdropper sees the

quadratic residue xt+1. Assuming that factoring n is difficult, the h least significant
bits of the principal square root xt of xt+1 modulo n are simultaneously secure (see
Definition 3.82 and Fact 3.89). Thus the eavesdropper can do no better than to guess
the pseudorandom bits pi, 1 ≤ i ≤ t. More formally, if the integer factorization
problem is hard, then the Blum-Goldwasser probabilistic encryption scheme is se-
mantically secure. Note, however, that for a modulus n of a fixed bitlength (e.g.,
1024 bits), this statement is no longer true, and the scheme should only be consid-
ered computationally secure.

(ii) As of 1996, the modulusn should be at least 1024 bits in length if long-term security
is desired (cf. Note 8.7). If n is a 1025-bit integer, then k = 1024 and h = 10.

(iii) As with the Rabin encryption scheme (Algorithm 8.11), the Blum-Goldwasser sch-
eme is also vulnerable to a chosen-ciphertext attack that recovers the private key from
the public key. It is for this reason that the Blum-Goldwasser scheme has not received
much attention in practice.

8.59 Note (efficiency of Blum-Goldwasser probabilistic encryption)
(i) Unlike Goldwasser-Micali encryption, the ciphertext in Blum-Goldwasser encryp-

tion is only longer than the plaintext by a constant number of bits, namely k+1 (the
size in bits of the integer xt+1).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.7 Probabilistic public-key encryption 311

(ii) The encryption process is quite efficient — it takes only 1 modular multiplication
to encrypt h bits of plaintext. By comparison, the RSA encryption process (Algo-
rithm 8.3) requires 1 modular exponentiation (me mod n) to encrypt k bits of plain-
text. Assuming that the parameter e is randomly chosen and assuming that an (unop-
timized) modular exponentiation takes 3k/2modular multiplications, this translates
to an encryption rate for RSA of 2/3 bits per modular multiplication. If one chooses
a special value for e, such as e = 3 (see Note 8.9), then RSA encryption is faster than
Blum-Goldwasser encryption.

(iii) Blum-Goldwasser decryption (step 2 of Algorithm 8.56) is also quite efficient, requir-
ing 1 exponentiation modulo p−1 (step 2a), 1 exponentiation modulo q−1 (step 2b),
1 exponentiation modulo p (step 2c), 1 exponentiation modulo q (step 2d), and tmul-
tiplications modulo n (step 2f) to decrypt ht ciphertext bits. (The time to perform
step 2e is negligible.) By comparison, RSA decryption (step 2 of Algorithm 8.3) re-
quires 1 exponentiation modulo n (which can be accomplished by doing 1 exponen-
tiation modulo p and 1 exponentiation modulo q) to decrypt k ciphertext bits. Thus,
for short messages (< k bits), Blum-Goldwasser decryption is slightly slower than
RSA decryption, while for longer messages, Blum-Goldwasser is faster.

8.7.3 Plaintext-aware encryption

While semantic security (Definition 8.47) is a strong security requirement for public-key
encryption schemes, there are other measures of security.

8.60 Definition A public-key encryption scheme is said to be non-malleable if given a cipher-
text, it is computationally infeasible to generate a different ciphertext such that the respec-
tive plaintexts are related in a known manner.

8.61 Fact If a public-key encryption scheme is non-malleable, it is also semantically secure.

Another notion of security is that of being plaintext-aware. In Definition 8.62, valid ci-
phertext means those ciphertext which are the encryptions of legitimate plaintext messages
(e.g. messages containing pre-specified forms of redundancy).

8.62 Definition A public-key encryption scheme is said to be plaintext-aware if it is computa-
tionally infeasible for an adversary to produce a valid ciphertext without knowledge of the
corresponding plaintext.

In the “random oracle model”, the property of being plaintext-aware is a strong one
— coupled with semantic security, it can be shown to imply that the encryption scheme is
non-malleable and also secure against adaptive chosen-ciphertext attacks. Note 8.63 gives
one method of transforming any k-bit to k-bit trapdoor one-way permutation (such as RSA)
into an encryption scheme that is plaintext-aware and semantically secure.

8.63 Note (Bellare-Rogaway plaintext-aware encryption) Let f be a k-bit to k-bit trapdoor one-
way permutation (such as RSA). Let k0 and k1 be parameters such that 2k0 and 2k1 steps
each represent infeasible amounts of work (e.g., k0 = k1 = 128). The length of the plain-
textm is fixed to be n = k− k0 − k1 (e.g., for k = 1024, n = 768). LetG : {0, 1}k0 −→
{0, 1}n+k1 and H : {0, 1}n+k1 −→ {0, 1}k0 be random functions. Then the encryption
function, as depicted in Figure 8.1, is

E(m) = f({m0k1 ⊕G(r)} ‖ {r ⊕H(m0k1 ⊕G(r))}),

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

312 Ch. 8 Public-Key Encryption

wherem0k1 denotesm concatenated with a string of 0’s of bitlength k1, r is a random bi-
nary string of bitlength k0, and ‖ denotes concatenation.

G

f

H

rm0k1

m0k1 ⊕G(r) r ⊕H(m0k1 ⊕G(r))

n+ k1
k0

n+ k0 + k1

E(m)

m plaintext

E(m) ciphertext
r random bit string

Figure 8.1: Bellare-Rogaway plaintext-aware encryption scheme.

Under the assumption thatG andH are random functions, the encryption schemeE of
Note 8.63 can be proven to be plaintext-aware and semantically secure. In practice,G and
H can be derived from a cryptographic hash function such as the Secure Hash Algorithm
(§9.4.2(iii)). In this case, the encryption scheme can no longer be proven to be plaintext-
aware because the random function assumption is not true; however, such a scheme appears
to provides greater security assurances than those designed using ad hoc techniques.

8.8 Notes and further references
§8.1

For an introduction to public-key cryptography and public-key encryption in particular, see
§1.8. A particularly readable introduction is the survey by Diffie [343]. Historical notes on
public-key cryptography are given in the notes to §1.8 on page 47. A comparison of the
features of public-key and symmetric-key encryption is given in §1.8.4; see also §13.2.5.

Other recent proposals for public-key encryption schemes include those based on finite au-
tomata (Renji [1032]); hidden field equations (Patarin [965]); and isomorphism of polyno-
mials (Patarin [965]).

§8.2
The RSA cryptosystem was invented in 1977 by Rivest, Shamir, and Adleman [1060]. Kal-
iski and Robshaw [655] provide an overview of the major attacks on RSA encryption and

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.8 Notes and further references 313

signatures, and the practical methods of counteracting these threats.

The computational equivalence of computing the decryption exponent d and factoring n
(§8.2.2(i)) was shown by Rivest, Shamir and Adleman [1060], based on earlier work by
Miller [876].

The attack on RSA with small encryption exponent (§8.2.2(ii)) is discussed by Håstad [544],
who showed more generally that sending the encryptions of more than e(e+ 1)/2 linearly
related messages (messages of the form (aim + bi), where the ai and bi are known) en-
ables an eavesdropper to recover the messages provided that the moduli ni satisfy ni >
2(e+1)(e+2)/4(e+1)(e+1). Håstad also showed that sending three linearly related messages
using the Rabin public-key encryption scheme (Algorithm 8.11) is insecure.

The attack on RSA with small decryption exponent d (§8.2.2(iv)) is due to Wiener [1240].
Wiener showed that his attack can be avoided if the encryption exponent e is chosen to be
at least 50% longer than the modulus n. In this case, d should be at least 160 bits in length
to avoid the square-root discrete logarithm algorithms such as Pollard’s rho algorithm (Al-
gorithm 3.60) and the parallelized variant of van Oorschot and Wiener [1207].

The adaptive chosen-ciphertext attack on RSA encryption (§8.2.2(v)) is due to Davida
[302]. See also the related discussion in Denning [327]. Desmedt and Odlyzko [341] de-
scribed an indifferent chosen-ciphertext attack in which the adversary has to obtain the
plaintext corresponding to aboutLn[12 ,

1
2] carefully chosen-ciphertext, subsequent to which

it can decrypt all further ciphertext in Ln[12 ,
1
2] time without having to use the authorized

user’s decryption machine.

The common modulus attacks on RSA (§8.2.2(vi)) are due to DeLaurentis [320] and Sim-
mons [1137].

The cycling attack (§8.2.2(vii)) was proposed by Simmons and Norris [1151]. Shortly after,
Rivest [1052] showed that the cycling attack is extremely unlikely to succeed if the primes
p and q are chosen so that: (i) p − 1 and q − 1 have large prime factors p′ and q′, respec-
tively; and (ii) p′ − 1 and q′ − 1 have large prime factors p′′ and q′′, respectively. Maurer
[818] showed that condition (ii) is unnecessary. Williams and Schmid [1249] proposed the
generalized cycling attack and showed that this attack is really a factoring algorithm. Rivest
[1051] provided heuristic evidence that if the primes p and q are selected at random, each
having the same bitlength, then the expected time before the generalized cycling attack suc-
ceeds is at least p1/3.

The note on message concealing (§8.2.2(viii)) is due to Blakley and Borosh [150], who also
extended this work to all composite integers n and determined the number of deranging
exponents for a fixed n, i.e., exponents e for which the number of unconcealed messages is
the minimum possible. For further work see Smith and Palmer [1158].

Suppose that two or more plaintext messages which have a (known) polynomial relation-
ship (e.g. m1 and m2 might be linearly related: m1 = am2 + b) are encrypted with the
same small encryption exponent (e.g. e = 3 or e = 216 + 1). Coppersmith et al. [277]
presented a new class of attacks on RSA which enable a passive adversary to recover such
plaintext from the corresponding ciphertext. This attack is of practical significance because
various cryptographic protocols have been proposed which require the encryption of poly-
nomially related messages. Examples include the key distribution protocol of Tatebayashi,
Matsuzaki, and Newman [1188], and the verifiable signature scheme of Franklin and Reiter
[421]. Note that these attacks are different from those of §8.2.2(ii) and §8.2.2(vi) where the
same plaintext is encrypted under different public keys.

Coppersmith [274] presented an efficient algorithm for finding a root of a polynomial of de-
gree k overZn, where n is an RSA-like modulus, provided that there there is a root smaller

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

314 Ch. 8 Public-Key Encryption

than n1/k. The algorithm yielded the following two attacks on RSA with small encryption
exponents. If e = 3 and if an adversary knows a ciphertext c and more than 2/3 of the plain-
textm corresponding to c, then the adversary can efficiently recover the rest ofm. Suppose
now that messages are padded with random bitstrings and encrypted with exponent e = 3.
If an adversary knows two ciphertexts c1 and c2 which correspond to two encryptions of
the same message m (with different padding), then the adversary can efficiently recovery
m, provided that the padding is less than 1/9 of the length of n. The latter attack suggests
that caution must be exercised when using random padding in conjunction with a small en-
cryption exponent.

Let n = pq be a k-bit RSA modulus, where p and q are k/2-bit primes. Coppersmith [273]
showed how n can be factored in polynomial time if the high order k/4 bits of p are known.
This improves an algorithm of Rivest and Shamir [1058], which requires knowledge of the
high order k/3 bits of p. For related theoretical work, see Maurer [814]. One implication of
Coppersmith’s result is that the method of Vanstone and Zuccherato [1214] for generating
RSA moduli having a predetermined set of bits is insecure.

A trapdoor in the RSA cryptosystem was proposed by Anderson [26] whereby a hardware
device generates the RSA modulus n = pq in such a way that the hardware manufacturer
can easily factor n, but factoring n remains difficult for all other parties. However, Kaliski
[652] subsequently showed how to efficiently detect such trapdoors and, in some cases, to
actually factor the modulus.

The arguments and recommendations about the use of strong primes in RSA key generation
(Note 8.8) are taken from the detailed article by Rivest [1051].

Shamir [1117] proposed a variant of the RSA encryption scheme called unbalanced RSA,
which makes it possible to enhance security by increasing the modulus size (e.g. from 500
bits to 5000 bits) without any deterioration in performance. In this variant, the public mod-
ulus n is the product of two primes p and q, where one prime (say q) is significantly larger
in size than the other; plaintext messages m are in the interval [0, p − 1]. For concrete-
ness, consider the situation where p is a 500-bit prime, and q is a 4500-bit prime. Fac-
toring such a 5000-bit modulus n is well beyond the reach of the special-purpose elliptic
curve factoring algorithm of §3.2.4 (whose running time depends on the size of the smallest
prime factor of n) and general-purpose factoring algorithms such as the number field sieve
of §3.2.7. Shamir recommends that the encryption exponent e be in the interval [20, 100],
which makes the encryption time with a 5000-bit modulus comparable to the decryption
time with a 500-bit modulus. Decryption of the ciphertext c (= md mod n) is accom-
plished by computingm1 = cd1 mod p, where d1 = d mod (p− 1). Since 0 ≤ m < p,
m1 is in fact equal tom. Decryption in unbalanced RSA thus only involves one exponenti-
ation modulo a 500-bit prime, and takes the same time as decryption in ordinary RSA with a
500-bit modulus. This optimization does not apply to the RSA signature scheme (§11.3.1),
since the verifier does not know the factor p of the public modulus n.

A permutation polynomial of Zn is a polynomial f(x) ∈ Zn[x] which induces a permuta-
tion of Zn upon substitution of the elements of Zn; that is, {f(a)|a ∈ Zn} = Zn. In RSA
encryption the permutation polynomial xe of Zn is used, where gcd(e, φ) = 1. Müller and
Nöbauer [910] suggested replacing the polynomial xe by the so-called Dickson polynomi-
als to create a modified RSA encryption scheme called the Dickson scheme. The Dickson
scheme was further studied by Müller and Nöbauer [909]. Other suitable classes of permu-
tation polynomials were investigated by Lidl and Müller [763]. Smith and Lennon [1161]
proposed an analogue of the RSA cryptosystem called LUC which is based on Lucas se-
quences. Due to the relationships between Dickson polynomials and the Lucas sequences,

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.8 Notes and further references 315

the LUC cryptosystem is closely related to the Dickson scheme. Bleichenbacher, Bosma,
and Lenstra [154] presented a chosen-message attack on the LUC signature scheme, under-
mining the primary advantage claimed for LUC over RSA. Pinch [976, 977] extended the
attacks on RSA with small encryption exponent (§8.2.2(ii)) and small decryption exponent
(§8.2.2(iv)) to the LUC system.

An analogue of the RSA cryptosystem which uses special kinds of elliptic curves over Zn,
where n is a composite integer, was proposed by Koyama et al. [708]. Demytko [321] pre-
sented an analogue where there is very little restriction on the types of elliptic curves that
can be used. A new cryptosystem based on elliptic curves over Zn in which the message is
held in the exponent instead of the group element was proposed by Vanstone and Zuccherato
[1213]. The security of all these schemes is based on the difficulty of factoring n. Kuro-
sawa, Okada, and Tsujii [721] showed that the encryption schemes of Koyama et al. and
Demytko are vulnerable to low exponent attacks (cf. §8.2.2(ii)); Pinch [977] demonstrated
that the attack on RSA with small decryption exponent d (§8.2.2(iv)) also extends to these
schemes. Kaliski [649] presented a chosen-ciphertext attack on the Demytko encryption
scheme (and also a chosen-message attack on the corresponding signature scheme), and
concluded that the present benefits of elliptic curve cryptosystems based on a composite
modulus do not seem significant.

§8.3
The Rabin public-key encryption scheme (Algorithm 8.11) was proposed in 1979 by Ra-
bin [1023]. In Rabin’s paper, the encryption function was defined to be E(m) = m(m +
b) mod n, where b and n comprise the public key. The security of this scheme is equiv-
alent to the security of the scheme described in Algorithm 8.11 with encryption function
E(m) = m2 mod n. A related digital signature scheme is described in §11.3.4. Schwenk
and Eisfeld [1104] consider public-key encryption and signature schemes whose security
relies on the intractability of factoring polynomials over Zn.

Williams [1246] presented a public-key encryption scheme similar in spirit to Rabin’s but
using composite integers n = pq with primes p ≡ 3 (mod 8) and q ≡ 7 (mod 8).
Williams’ scheme also has the property that breaking it (that is, recovering plaintext from
some given ciphertext) is equivalent to factoring n, but has the advantage over Rabin’s sch-
eme that there is an easy procedure for identifying the intended message from the four roots
of a quadratic polynomial. The restrictions on the forms of the primes p and qwere removed
later by Williams [1248]. A simpler and more efficient scheme also having the properties
of provable security and unique decryption was presented by Kurosawa, Ito, and Takeuchi
[720]. As with Rabin, all these schemes are vulnerable to a chosen-ciphertext attack (but
see Note 8.14).

It is not the case that all public-key encryption schemes for which the decryption problem
is provably as difficult as recovering the private key from the public key must succumb to
a chosen-ciphertext attack. Goldwasser, Micali, and Rivest [484] were the first to observe
this, and presented a digital signature scheme provably secure against an adaptive chosen-
ciphertext attack (see §11.6.4). Naor and Yung [921] proposed the first concrete public-key
encryption scheme that is semantically secure against indifferent chosen-ciphertext attack.
The Naor-Yung scheme uses two independent keys of a probabilistic public-encryptionsch-
eme that is secure against a passive adversary (for example, the Goldwasser-Micali scheme
of Algorithm 8.51) to encrypt the plaintext, and then both encryptions are sent along with
a non-interactive zero-knowledge proof that the same message was encrypted with both
keys. Following this work, Rackoff and Simon [1029] gave the first concrete construction
for a public-key encryption scheme that is semantically secure against an adaptive chosen-

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

316 Ch. 8 Public-Key Encryption

ciphertext attack. Unfortunately, these schemes are all impractical because of the degree of
message expansion.

Damgård [297] proposed simple and efficient methods for making public-key encryption
schemes secure against indifferent chosen-ciphertext attacks. Zheng and Seberry [1269]
noted that Damgård’s schemes are insecure against an adaptive chosen-ciphertext attack,
and proposed three practical schemes intended to resist such an attack. The Damgård and
Zheng-Seberry schemes were not proven to achieve their claimed levels of security. Bel-
lare and Rogaway [93] later proved that one of the Zheng-Seberry schemes is provably se-
cure against adaptive chosen-ciphertext attacks for their random oracle model. Lim and
Lee [766] proposed another method for making public-key schemes secure against adap-
tive chosen-ciphertext attacks; this scheme was broken by Frankel and Yung [419].

§8.4
The ElGamal cryptosystem was invented by ElGamal [368]. Haber and Lenstra (see Ruep-
pel et al. [1083]) raised the possibility of a trapdoor in discrete logarithm cryptosystems
whereby a modulus p is generated (e.g., by a hardware manufacturer) that is intentionally
“weak”; cf. Note 4.58. Here, a “weak” prime p is one for which the discrete logarithm prob-
lem in Z∗p is relatively easy. For example, p − 1 may contain only small prime factors, in
which case the Pohlig-Hellman algorithm (§3.6.4) would be especially effective. Another
example is a prime p for which the number field sieve for discrete logarithms (page 128) is
especially well-suited. However, Gordon [509] subsequently showed how such trapdoors
can be easily detected. Gordon also showed that the probability of a randomly chosen prime
possessing such a trapdoor is negligibly small.

Rivest and Sherman [1061] gave an overview and unified framework for randomized en-
cryption, including comments on chosen-plaintext and chosen-ciphertext attacks.

Elliptic curves were first proposed for use in public-key cryptography by Koblitz [695] and
Miller [878]. Recent work on the security and implementation of elliptic curve systems
is reported by Menezes [840]. Menezes, Okamoto, and Vanstone [843] showed that if the
elliptic curve belongs to a special family called supersingular curves, then the discrete log-
arithm problem in the elliptic curve group can be reduced in expected polynomial time to
the discrete logarithm problem in a small extension of the underlying finite field. Hence, if
a supersingular elliptic curve is desired in practice, then it should be carefully chosen.

A modification of ElGamal encryption employing the group of units Z∗n, where n is a com-
posite integer, was proposed by McCurley [825]; the scheme has the property that breaking
it is provably at least as difficult as factoring the modulusn (cf. Fact 3.80). If a cryptanalyst
somehow learns the factors of n, then in order to recover plaintext from ciphertext it is still
left with the task of solving the Diffie-Hellman problem (§3.7) modulo the factors of n.

Hyperelliptic curve cryptosystems were proposed by Koblitz [696] but little research has
since been done regarding their security and practicality.

The possibility of using the class group of an imaginary quadratic number field in public-
key cryptography was suggested by Buchmann and Williams [218], however, the attrac-
tiveness of this choice was greatly diminished after the invention of a subexponential-time
algorithm for computing discrete logarithms in these groups by McCurley [826].

Smith and Skinner [1162] proposed analogues of the Diffie-Hellman key exchange (called
LUCDIF) and ElGamal encryption and digital signature schemes (called LUCELG) which
use Lucas sequences modulo a prime p instead of modular exponentiation. Shortly there-
after, Laih, Tu, and Tai [733] and Bleichenbacher, Bosma, and Lenstra [154] showed that
the analogue of the discrete logarithm problem for Lucas functions polytime reduces to the

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.8 Notes and further references 317

discrete logarithm problem in the multiplicative group of the finite field Fp2 . Since there
are subexponential-time algorithms known for the discrete logarithm problem in these fields
(cf. §3.6), LUCDIF and LUCELG appear not to offer any advantages over the original sch-
emes.

§8.5
The McEliece encryption scheme (Algorithm 8.30) was introduced in 1978 by McEliece
[828]. For information on Goppa codes and their decoding algorithms, see MacWilliams
and Sloane [778]. The problem of decoding an arbitrary linear code was shown to be NP-
hard by Berlekamp, McEliece, and van Tilborg [120]. The security of the McEliece scheme
has been studied by Adams and Meijer [6], Lee and Brickell [742], van Tilburg [1212], Gib-
son [451], and by Chabaud [235]. Gibson showed that there are, in fact, many trapdoors to
a given McEliece encryption transformation, any of which may be used for decryption; this
is contrary to the results of Adams and Meijer. However, Gibson notes that there are proba-
bly sufficiently few trapdoors that finding one by brute force is computationally infeasible.
The cryptanalytic attack reported by Korzhik and Turkin [707] has not been published in
its entirety, and is not believed to be an effective attack.

The strength of the McEliece encryption scheme can be severely weakened if the Goppa
code is replaced with another type of error-correcting code. For example, Gabidulin, Para-
monov, and Tretjakov [435] proposed a modification which uses maximum-rank-distance
(MRD) codes in place of Goppa codes. This scheme, and a modification of it by Gabidulin
[434], were subsequently shown to be insecure by Gibson [452, 453].

§8.6
The basic and multiple-iterated Merkle-Hellman knapsack encryption schemes (§8.6.1) we-
re introduced by Merkle and Hellman [857]. An elementary overview of knapsack systems
is given by Odlyzko [941].

The first polynomial-timeattack on the basic Merkle-Hellman scheme (cf. Note 8.40(i)) was
devised by Shamir [1114] in 1982. The attack makes use of H. Lenstra’s algorithm for inte-
ger programming which runs in polynomial time when the number of variables is fixed, but
is inefficient in practice. Lagarias [723] improved the practicality of the attack by reducing
the main portion of the procedure to a problem of finding an unusually good simultane-
ous diophantine approximation; the latter can be solved by the more efficientL3-lattice ba-
sis reduction algorithm (§3.10.1). The first attack on the multiple-iterated Merkle-Hellman
scheme was by Brickell [200]. For surveys of the cryptanalysis of knapsack schemes, see
Brickell [201] and Brickell and Odlyzko [209]. Orton [960] proposed a modification to the
multiple-iterated Merkle-Hellman scheme that permits a knapsack density approaching 1,
thus avoiding currently known attacks. The high density also allows for a fast digital sig-
nature scheme.

Shamir [1109] proposed a fast signature scheme based on the knapsack problem, later bro-
ken by Odlyzko [939] using the L3-lattice basis reduction algorithm.

The Merkle-Hellman knapsack scheme illustrates the limitations of using an NP-complete
problem to design a secure public-key encryption scheme. Firstly, Brassard [190] showed
that under reasonable assumptions, the problem faced by the cryptanalyst cannot be NP-
hard unless NP=co-NP, which would be a very surprising result in computational complex-
ity theory. Secondly, complexity theory is concerned primarily with asymptotic complex-
ity of a problem. By contrast, in practice one works with a problem instance of a fixed size.
Thirdly, NP-completeness is a measure of the worst-case complexity of a problem. By con-
trast, cryptographic security should depend on the average-case complexity of the problem
(or even better, the problem should be intractable for essentially all instances), since the

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

318 Ch. 8 Public-Key Encryption

cryptanalyst’s task should be hard for virtually all instances and not merely in the worst case.
There are many NP-complete problems that are known to have polynomial-time average-
case algorithms, for example, the graph coloring problem; see Wilf [1243]. Another inter-
esting example is provided by Even and Yacobi [379] who describe a symmetric-key en-
cryption scheme based on the subset sum problem for which breaking the scheme (under a
chosen-plaintext attack) is an NP-hard problem, yet an algorithm exists which solves most
instances in polynomial time.

The Chor-Rivest knapsack scheme (Algorithm 8.42) was proposed by Chor and Rivest
[261]. Recently, Schnorr and Hörner [1100] introduced new algorithms for lattice ba-
sis reduction that are improvements on the L3-lattice basis reduction algorithm (Algo-
rithm 3.101), and used these to break the Chor-Rivest scheme with parameters {p =
103, h = 12}. Since the density of such knapsack sets is 1.271, the attack demonstrated
that subset sum problems with density greater than 1 can be solved via lattice basis re-
duction. Schnorr and Hörner also reported some success solving Chor-Rivest subset sum
problems with parameters {p = 151, h = 16}. It remains to be seen whether the tech-
niques of Schnorr and Hörner can be successfully applied to the recommended parameter
case {p = 197, h = 24}.

Depending on the choice of parameters, the computation of discrete logarithms in the Chor-
Rivest key generation stage (step 4 of Algorithm 8.41) may be a formidable task. A mod-
ified version of the scheme which does not require the computation of discrete logarithms
in a field was proposed by H. Lenstra [758]. This modified scheme is called the powerline
system and is not a knapsack system. It was proven to be at least as secure as the original
Chor-Rivest scheme, and is comparable in terms of encryption and decryption speeds.

Qu and Vanstone [1013] showed how the Merkle-Hellman knapsack schemes can be viewed
as special cases of certain knapsack-like encryption schemes arising from subset factoriza-
tions of finite groups. They also proposed an efficient public-key encryption scheme based
on subset factorizations of the additive group Zn of integers modulo n. Blackburn, Mur-
phy, and Stern [143] showed that a simplified variant which uses subset factorizations of
the n-dimensional vector space Zn2 over Z2 is insecure.

§8.7
The notion of probabilistic public-key encryption was conceived by Goldwasser and Micali
[479], who also introduced the notions of polynomial and semantic security. The equiva-
lence of these two notions (Fact 8.49) was proven by Goldwasser and Micali [479] and Mi-
cali, Rackoff, and Sloan [865]. Polynomial security was also studied by Yao [1258], who
referred to it as polynomial-time indistinguishability.

The Goldwasser-Micali scheme (Algorithm 8.51) can be described in a general setting by
using the notion of a trapdoor predicate. Briefly, a trapdoor predicate is a Boolean function
B : {0, 1}∗ −→ {0, 1} such that given a bit v it is easy to choose an x at random satisfy-
ing B(x) = v. Moreover, given a bitstring x, computing B(x) correctly with probability
significantly greater than 12 is difficult; however, if certain trapdoor information is known,
then it is easy to computeB(x). If entityA’s public key is a trapdoor predicateB, then any
other entity encrypts a message bitmi by randomly selecting an xi such thatB(xi) = mi,
and then sends xi toA. SinceA knows the trapdoor information, she can computeB(xi) to
recovermi, but an adversary can do no better than guess the value ofmi. Goldwasser and
Micali [479] proved that if trapdoor predicates exist, then this probabilistic encryption sch-
eme is polynomially secure. Goldreich and Levin [471] simplified the work of Yao [1258],
and showed how any trapdoor length-preserving permutation f can be used to obtain a trap-
door predicate, which in turn can be used to construct a probabilistic public-key encryption

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.8 Notes and further references 319

scheme.

The Blum-Goldwasser scheme (Algorithm 8.56) was proposed by Blum and Goldwasser
[164]. The version given here follows the presentation of Brassard [192]. Two probabilis-
tic public-key encryption schemes, one whose breaking is equivalent to solving the RSA
problem (§3.3), and the other whose breaking is equivalent to factoring integers, were pro-
posed by Alexi et al. [23]. The scheme based on RSA is as follows. Let h = blg lgnc,
where (n, e) is entity A’s RSA public key. To encrypt an h-bit messagem for A, choose
a random y ∈ Z∗n such that the h least significant bits of y equal m, and compute the ci-
phertext c = ye mod n. A can recoverm by computing y = cd mod n, and extracting the
h least significant bits of y. While both the schemes proposed by Alexi et al. are more ef-
ficient than the Goldwasser-Micali scheme, they suffer from large message expansion and
are consequently not as efficient as the Blum-Goldwasser scheme.

The idea of non-malleable cryptography (Definition 8.60) was introduced by Dolev, Dwork,
and Naor [357], who also observed Fact 8.61. The paper gives the example of two con-
tract bidders who encrypt their bids. It should not be possible for one bidder A to see the
encrypted bid of the other bidder B and somehow be able to offer a bid that was slightly
lower, even if A may not know what the resulting bid actually is at that time. Bellare and
Rogaway [95] introduced the notion of plaintext-aware encryption (Definition 8.62). They
presented the scheme described in Note 8.63, building upon earlier work of Johnson et al.
[639]. Rigorous definitions and security proofs were provided, as well as a concrete instan-
tiation of the plaintext-aware encryption scheme using RSA as the trapdoor permutation,
and constructing the random functionsG andH from the SHA-1 hash function (§9.4.2(iii)).
Johnson and Matyas [640] presented some enhancements to the plaintext-aware encryption
scheme. Bellare and Rogaway [93] presented various techniques for deriving appropriate
random functions from standard cryptographic hash functions.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

