

AFE BABALOLA UNIVERSITY, ADO-EKITI, EKITI STATE, NIGERIA COLLEGE OF ENGINEERING

BACHELOR OF ENGINEERING ASSIGNMENT VI

ENG 382: Engineering Mathematics IV

Session: 2019/2020	Semester: Second	Unit: 3	Duration: 5 days
--------------------	------------------	---------	------------------

Instruction: Kindly solve all the problems.

Question 1 [20 Marks]

The temperature distribution of a rod can be represented by the model given in Equation (1), where the temperature is in *Kelvin* (K).

 $u_t - cu_{xx} = 0$, for $0 \le x \le 1m$, $0 \le t \le 0.1 day$ (1)

Given that the initial temperature of the rod is:

 $u(x,0) = x^4 K, \qquad \text{for} \qquad 0 \le x \le 1m, \qquad (2)$

and the temperatures at x = 0m and x = 1m are, respectively,

$$u(0,t) = 0K$$
, and $u(1,t) = 1K$ for $0 \le t \le 0.1 \, day$, (3)

if the mesh size is $\Delta x = 0.2 m$, the time step is $\Delta t = 0.02 day$ and the parameter $c = 1 \frac{m^2}{day}$, using explicit

finite-difference method,

- a) manually obtain the temperature profile of the rod in tabular form, and
- b) generate the profile in tabular and 3D graphical forms with the aid of Microsoft Excel.

Thank you and, please, stay safe.