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Conservation Laws

LEARNING OUTCOMES

1. Develop equations that govern pressure

variation within a static fluid

2. Determine the buoyancy forces that act on

objects immersed within a fluid

3. Develop a general relationship for the time

rate of change of any fluid system property

4. Apply the generalized formula for the time

rate of change of a system property to the

conservation of mass, conservation of

momentum, and conservation of energy

5. Describe the conservation of momentum

principle with acceleration

6. Derive the Navier-Stokes equations

7. Explain the Bernoulli principle and the

assumptions inherent in this principle

3.1 FLUID STATICS EQUATIONS

Fluid statics problems deal with fluids that either are at rest or are only undergoing
constant velocity rigid body motions. This implies that the fluid is only subjected to nor-
mal stresses because by definition a fluid will continually deform under the application
of a shear stress. Shear stress would induce angular deformations within the fluid (see
Figure 2.15) and therefore acceleration in particular directions. Another way to think
about these types of problems is that the relative position of all fluid elements remains
the same after loading. Therefore, the fluid elements would only experience pure trans-
lation or pure rotation. These types of problems fall under the class of hydrostatics and
the analysis methods for these problems are typically simpler than fluid dynamics pro-
blems. Newton’s second law of motion, simplified to the sum of the forces acting on the
fluid is equal to zero (

P
F
-
5 0), is the primary relationship used to solve these

problems.
Although fluid statics problems make the assumption that the fluid elements are not

undergoing deformation, it is still possible to gain important data and insight from this
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type of analysis. Normal forces can be transmitted by fluids, and these forces can then be
applied to devices within a biological system. For instance, by inserting a catheter into a
patient, there will be some hydrostatic force that the blood transmits onto the device.
While moving the catheter throughout the cardiovascular system, the hydrostatic force
changes, and it may be critical to determine this force or the total force acting on the
device. Imagine undergoing balloon angioplasty (in which a small balloon attached to the
end of a catheter is inflated within the cardiovascular system) and not knowing the hydro-
static pressure that is being applied to the end of the catheter from the fluid. If the physi-
cian does not overcome this pressure, the balloon will not inflate and the procedure will
not be completed to remedy the patient. Therefore, it is critical to understand these princi-
ples (among others) to conduct balloon angioplasty. Hydrostatic pressure is due to the
weight of the fluid itself and the surrounding atmospheric pressure. Therefore, the hydro-
static pressure is different at various heights throughout the body. When a person is
standing upright, the hydrostatic pressure at the top of the head is lower than that at the
heart, and the hydrostatic pressure at the feet is greater than that of the heart. One way to
remember this principle is when you have been standing in the same position for a long
time, without moving your legs, blood pools in your lower extremities. Typically, this
would eventually lead to a “cramping” feeling followed by a “pins and needles” feeling
when blood is re-perfused. The reason that the blood pools in your lower limbs is that the
blood in the leg cannot overcome the hydrostatic pressure to return back to the heart.
Also, after sleeping, if you stand up too fast, the heart cannot overcome the new hydro-
static pressure difference and you may get light-headed. When we discuss venous return
and the heart mechanics, we will show how the body can compensate for these two out-
comes. Another way to recall this phenomenon is that after donating blood, the nurse will
typically tell you to raise your arm. Why is this? This increases the pressure difference
between your heart and your arm and will minimize the blood loss while a clot is forming
at the venipuncture location. In this case, blood would have a hard time overcoming the
new hydrostatic pressure gradient to enter the arm.

As stated in the previous chapter, the primary quantity of interest within fluid statics pro-
blems is the pressure field throughout the fluid. Here we will develop the equations used in
fluid statics analysis. To accomplish this, Newton’s second law of motion will be applied to a
differential element of fluid (Figure 3.1). Recall that Newton’s second law of motion is the
sum of all of the forces acting on an element (body forces and surface forces) is equal to the
element’s mass multiplied by the element’s acceleration (if density is constant). We will
assume here that the only body force acting on the element is due to gravity. In most biofluid
mechanics problems in this textbook, this will be the only body force that is considered.
However, be cautioned that other body forces can be applied via a magnetic field (blood
flow of a patient within an MRI) or by an electric field. The mass of the differential element,
dm, is equal to the fluid density multiplied by the volume of the element
(dm5 ρdV5 ρdxdydz, in Cartesian coordinates; for other coordinate systems the analysis is
similar, note that V � volume and v � velocity ). Therefore, the force due to gravity becomes

d Fb
-

5 g
-
dm5 g

-ρdxdydz ð3:1Þ
where g

-
is the gravitational constant.
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Because the fluid is under static flow conditions, there are no shear forces applied to
the fluid element. Therefore, the only surface force acting on the element is the pressure
force. Pressure varies with position throughout the entire fluid. The total pressure that acts
on the differential element is equal to the summation of the pressure acting on each face
of the differential element. Let us define the pressure at the center of the differential ele-
ment to be p (Figure 3.1). The pressure at each face would be equal to p plus or minus the
particular directional pressure gradient multiplied by the distance between the center of
the element and the face. For instance, in the x-direction, the pressure on the right face in
the current orientation, shown in Figure 3.1, would be

p1
@p

@x

dx

2

whereas the pressure on the left face would be

p2
@p

@x

dx

2

Remember that pressure has the same unit as stress. In order to determine the force
that the pressure exerts on each face, one must multiply the stress by the area over which
it works (the two forces that act in the x-direction are shown in Figure 3.1). In this figure,
the pressure force is also multiplied by a unit vector indicating the direction that the force
acts within. Remember, for pressure there is a sign convention; a positive pressure is a
compressive normal stress, and these are the forces that are shown on the differential ele-
ment in Figure 3.1. To balance forces, the differential element would produce an equal and
opposite force on the adjacent fluid element.

dz

dy

dydz (−i)∂p dx
∂x  2p

X

Y

Z

dx

p +
→

dydz (i)∂p dx
∂x  2

p −
→

FIGURE 3.1 X-direction pressure forces that act on a differential fluid element. The same pressure forces can
be derived for the other Cartesian directions.
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The four remaining pressure forces (that act in the y- and z-directions) can be obtained
through a similar analysis method. By summing all of these six forces, the total surface
force acting on the fluid element can be obtained. It would be represented as

d Fs
-

5 p2
@p

@x

dx

2

� �
ðdydzÞð i-Þ1 p1

@p

@x

dx

2

� �
ðdydzÞð2 i

-Þ1 p2
@p

@y

dy

2

� �
ðdxdzÞð j-Þ

1 p1
@p

@y

dy

2

� �
ðdxdzÞð2 j

-Þ1 p2
@p

@z

dz

2

� �
ðdxdyÞð k

-
Þ1 p1

@p

@z

dz

2

� �
ðdxdyÞð2k

-
Þ

ð3:2Þ

Combining terms in the previous equations yields

d Fs
-
5 p2

@p

@x

dx

2

� �
ðdydzÞð i-Þ1 2p2

@p

@x

dx

2

� �
ðdydzÞð i-Þ1 p2

@p

@y

dy

2

� �
ðdxdzÞð j-Þ

1 2p2
@p

@y

dy

2

� �
ðdxdzÞð2 j

-Þ1 p2
@p

@z

dz

2

� �
ðdxdyÞð k

-
Þ1 2p2

@p

@z

dz

2

� �
ðdxdyÞð k

-
Þ

522
@p

@x

dx

2

� �
ðdydzÞð i-Þ22

@p

@y

dy

2

� �
ðdxdzÞð j-Þ22

@p

@z

dz

2

� �
ðdxdyÞð k

-
Þ

52
@p

@x
i
-
1

@p

@y
j
-
1

@p

@z
k
-

� �
dxdydz

ð3:3Þ

From a previous class in calculus, the final term in the parentheses (right-hand side of the
equation) of Equation 3.3 is the gradient (denoted as grad or r) of the pressure force in
Cartesian coordinates. Therefore, the surface forces acting on a differential fluid element
can be simplified to

d Fs
-

52r p
-
dxdydz ð3:4Þ

Returning to Newton’s second law, the sum of the forces acting on a differential fluid
element can then be represented as

dF
-
5 d Fb

-

1 d Fs
-

5 g
-ρdxdydz2r p

-
dxdydz5 ðg-ρ2r p

-Þdxdydz ð3:5Þ
If one divides the summation of the force acting on a differential element of fluid by the
unit volume (Equation 3.5), then one gets a relationship that holds for fluid particles, and
is in terms of density:

d F
-

dxdydz
5

d F
-

dV
5 g

-ρ2r p
- ð3:6Þ

For a static fluid flow case ða-5 0Þ, Newton’s second law of motion for a particle with a
finite volume simplifies to

d F
-

dV
5 g

-ρ2r p
-
5 ρ a-5 0 ð3:7Þ
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where density multiplied by the differential volume has been substituted for the differen-
tial mass. The significance of this equation is that the gravitational force must be balanced
by the pressure force at each individual point within the fluid. Remember that this is only
true if the fluid does not experience acceleration. In terms of the vector component equa-
tions, which must independently summate to zero, for fluid static problems, Equation 3.7
can be represented as

2
@p

@x
1 ρgx 5 0

2
@p

@y
1 ρgy 5 0

2
@p

@z
1 ρgz 5 0

ð3:8Þ

It is conventional to choose a coordinate system in a particular way, so that the gravita-
tional force acts in only one direction. Typically, for these types of fluids problems, the
gravitational force acts in the z-direction of the Cartesian coordinate system. With this def-
inition, Equation 3.8 simplifies to

@p

@x
5 0

@p

@y
5 0

@p

@z
52 ρgz 5 ρg

ð3:9Þ

because gx5 gy5 0 and gz52 g. Using these assumptions, the pressure is only a function
of one coordinate variable (z) and it is independent of the other two coordinate variables
(x and y). Note that pressure can act in the x/y directions; however, the pressure must be
constant. The assumptions made in this analysis are that the fluid is under static flow con-
ditions (has no acceleration term), the only body force is the gravitational force, and that
gravity is only aligned with the z-axis (using the Cartesian coordinate system). Combined,
this allows the use of a total derivative instead of a partial derivative in Equation 3.9.
Therefore,

dp

dz
52 ρgz ð3:10Þ

Equation 3.10 relates the pressure within a fluid to the vertical height of the fluid, if
the assumptions made are valid or are within a reasonable estimate of the flow condi-
tions. The previous equation can be integrated to calculate the pressure distribution
throughout a static fluid, if the correct boundary conditions are applied. In general, you
would need to know if the fluid’s density or if gravity varies with changes in vertical
distances.
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Example

Calculate the static fluid pressure in the cranium at the end of systole and at the end of diastole.

Assume that the cranium is 30 cm above the aortic valve and that the pressure at systole and dias-

tole is 120 mmHg and 80 mmHg, respectively (see Figure 3.2). The density of blood is 1050 kg/m3.

Solution
dp52 ρgzdz

ðp1
po

dp52 ρgz
ðz1
z0

dz

p
p1
p0 52 ρgzz z1

z0

����
p1 2 p0 52 ρgzðz1 2 z0Þ

p1 5 p0 2 ρgzðz1 2 z0Þ
End of Systole

p1 5 p0 2 ρgzðz1 2 z0Þ

p1 5 120 mmHg2 1050
kg

m3

� �
9:81

m

s2

� �
ð30 cm2 0 cmÞ 1 m

100 cm

� �
1 mmHg

133:32 Pa

� �

p1 5 96:82 mmHg

End of Diastole

p1 5 p0 2 ρgzðz1 2 z0Þ

p1 5 80 mmHg2 1050
kg

m3

� �
9:81

m

s2

� �
ð30 cm2 0 cmÞ 1 m

100 cm

� �
1 mmHg

133:32 Pa

� �

p1 5 56:82 mmHg

30 cm

FIGURE 3.2 Difference in fluid static pressure between the aortic
valve and the cranium based on height.
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Notice that in the above example, the absolute change in pressure remains the same at
the end of systole and diastole (Δp5223.18 mmHg). This change in pressure is constant
because we assumed that the height and the blood density did not change. Again, this is
only valid if the three assumptions we made to derive this formula can be applied to the
particular example.

The previous example brings us to an important distinction in fluid statics situations.
All pressures must be referenced to a specific reference value. For instance, we may have
chosen to call the pressure at the aortic valve 0 mmHg, and this choice would make the
cranium pressure exactly223.18 mmHg for each of the two cases in the previous example.
This is true even when the aortic pressure is variable, because it is our reference and is
defined as 0 mmHg at all times. There are two types of pressures that we can discuss. The
first is the absolute pressure, and the second is the gauge pressure. Absolute pressure is in
reference to a vacuum; this would also be the absolute (or exact) pressure of the system at
your particular point of interest. Gauge pressure is the pressure of the system related to
some other reference pressure, which is conventionally atmospheric pressure. Therefore,
gauge pressure is actually a pressure difference and is not the actual pressure of the sys-
tem. In our example above, 120 mmHg and 80 mmHg are gauge pressures. This means
that the actual pressure at the aortic valve would be 120 mmHg plus 1 atm (which would
be equal to an absolute pressure of 880 mmHg). In this textbook, we will refer all gauge
pressures to atmospheric pressure, so that

pgauge 5 pabsolute 2 patmospheric

Equation 3.10 describes the pressure variation in any static fluid. Changes in the pres-
sure force are only a function of density, gravity, and the height location, assuming that
the gravitational force acts only in the z-direction. In the previous example, we made the
unstated assumption that changes in gravity are negligible. For most practical biofluid
mechanics problems, the variation in the gravitation force with height is insignificant.
Assuming that gravity is 9.81 m/s2 at sea level, for every kilometer above sea level gravity
reduces by approximately 0.002 m/s2. Therefore, when the height changes that are being
described are on the order of meters or centimeters (which will be typical in this textbook),
the change in gravity with height can be neglected. This is a reasonable assumption.
However, in some biofluid situations, it may not be a good assumption that the density is
constant, so be careful applying this rule.

Remember our definition for incompressible fluids; the fluid density is constant under
all conditions. In this situation, it would be appropriate to use Equation 3.10, in the form
shown in the example problem. The pressure variation in a static incompressible fluid
would then be

p5 p0 2 ρgzðz2 z0Þ ð3:11Þ
A useful instrument to measure pressure variations solely based on height differences

is a manometer. In classical fluid mechanics examples, manometers are used extensively
to determine the pressure of a fluid compared to atmospheric pressure (Figure 3.3).
Relating this to a biological example, manometers have been coupled to catheter systems
in order to measure the intra-vascular pressure relative to atmospheric pressures. Even
though the blood is flowing within the blood vessel, the blood that was diverted into the
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catheter system would not be flowing, but it would maintain the same pressure of the
flowing blood within the vascular system. These systems however are not very accurate
when quantifying pressure because of the effects that they induce on the patient. Most
likely, blood flow within the vessel would be shunted or the vessel would be ligated to
insert the catheter. Therefore, the pressure that is being measured by the manometer sys-
tem is not necessarily the exact physiological pressure, under normal conditions.

Example

Blood is flowing through point P (Figure 3.4), which is connected to a catheter tip manometer

system. Blood enters the manometer and equilibrates the pressure of the various fluids within

the system. Calculate the pressure within the blood vessel.

Solution

p1 5 patm 2 ρ2gðz1 2 z0Þ

p1 5 760 mmHg2 1200
kg

m3

� �
9:81

m

s2

� �
ð10 cmÞ 1 m

100 cm

� �
1 mmHg

133:32 Pa

� �
5 751:17 mmHg

p2 5 p1 2 ρ1gðz2 2 z1Þ

Atmospheric
Pressure

h2
h1 Fluid 2, ρ2

Fluid 1, ρ1

P

FIGURE 3.3 Schematic of a classic fluid mechan-
ics manometer for measuring the pressure of a fluid
at P. By measuring the differences in height, with a
known open pressure, the hydrostatic pressure at P
can be calculated.

Fluid 1,
ρ1 = 879 kg/m3

Fluid 2,
ρ2  = 1200 kg/m3

Atmospheric
pressure

Blood

25 cm
2

1

45 cm

10 cm

P

FIGURE 3.4 Schematic of a catheter tip manometer to measure intra-vascular blood pressure.
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p2 5 751:17 mmHg1 879
kg

m3

� �
9:81

m

s2

� �
ð45 cmÞ 1 m

100 cm

� �
1 mmHg

133:32 Pa

� �
5 780:28 mmHg

pblood 5 p2 2 ρbloodgðzp 2 z2Þ

pblood 5 780:28 mmHg2 1050
kg

m3

� �
9:81

m

s2

� �
ð25 cmÞ 1 m

100 cm

� �
1 mmHg

133:32 Pa

� �
5 760:96 mmHg

The following example illustrates a few principles that should be remembered when
working on fluid statics problems. The first is that the pressure at an interface between
two different fluids is always the same. This is how we can equate the pressure at location 1
and 2, 2 and P. If the fluid is continuous (same density), any location at the same height
has the same pressure. Therefore, you can move around the bends without calculating
each pressure change around those bends. Also, the dashed line through fluid one has the
same pressure as location 2. Finally, pressure should increase as the elevation decreases
and pressure should decrease as the elevation increases.

There are many biofluid problems in which density will vary. These types of fluids are
compressible fluids and the density function would need to be stated within the problem.
The density function would need to be given as a function of pressure and/or height.
Once this function is known, then Equation 3.10 can be used to solve for the pressure dis-
tribution throughout the fluid. As an example, the density of most gases depends on the
pressure and the temperature of the system. The ideal gas law represents this relationship
and should be familiar to most students. The ideal gas law states that

p5 ρRT ð3:12Þ
where R is the universal gas constant (8.314 J/(g mol K)) and T is the absolute temperature
(in Kelvin). The problem with using this relationship is that it introduces a new variable,
T, into the equation, which may vary with height as well. We will typically make the
assumption in this textbook that temperature fluctuations within the body can be
neglected. This means that for humans, the temperature will be assumed to be 310.15 K
(37�C), unless stated otherwise. Using the ideal gas law, the pressure variation in a com-
pressible fluid, with a constant temperature is

dp

dz
52 ρgz 5

p

RT
gz

dp

p
52

gz
RT

dz

lnðpÞ
���p1
p0
52

gz
RT

z
���z1
z0

lnðp1Þ2 lnðp0Þ5 ln
p1
p0

� �
52

gz
RT

ðz1 2 z0Þ
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p1
p0

5 e2
gz
RTðz1 2 z0Þ

p1 5 p0e
2

gz
RTðz1 2 z0Þ ð3:13Þ

Depending on the particular application of the problem, the differential equation that
relates pressure variations to height changes (Equation 3.10) can be solved for any fluid
that has a density or temperature variation with height.

There is one important point to remember about hydrostatic pressure. Most students
should be familiar with the concept that pressure gradient acts as a driving force for fluid
flow (e.g., the fluid will flow from high pressure to low pressure). Hydrostatic pressure is
not this driving force; otherwise, it would be easier for blood to flow from the heart to the
head then from the heart to the feet (when standing upright). Hydrostatic pressure is
more similar to a friction concept; that is, to move an object, enough force must be applied
to overcome the frictional forces. In fluids examples, there must be enough force applied
to the fluid to overcome the hydrostatic pressure gradient in order to have the fluid accel-
erate in that direction. Also, in some instances, hydrostatic pressure can aid in fluid move-
ment, whereas in other instances it can hinder movement.

3.2 BUOYANCY

Buoyancy is the net vertical force acting on an object that is either floating on a fluid’s
surface or immersed within the fluid. To determine the net force acting on an immersed
object, the same relationship for pressure variation within a static fluid can be applied.
Starting from Equation 3.10, the net pressure on a three-dimensional object would need to
take into account the quantity of material that is in the z-direction (Figure 3.5). Again, by
taking a differential element, the net force in the z-direction would be

dFz 5 ðp1 ρgh1ÞdA2 ðp1 ρgh2ÞdA5 ρgðh1 2 h2ÞdA ð3:14Þ
Recall from a calculus course that

ðh1 2 h2ÞdA5 dV

h2

h1

z

p

dA

FIGURE 3.5 A body immersed in a static fluid. dA
describes the cross-sectional area of the body at the loca-
tion of h1 and h2 (which are measured in the z-axis).
Various cross-sectional areas would be used to deter-
mine the buoyancy forces on an immersed object.
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which is the volume of the element of interest (in Figure 3.5 this would be the shaded
cylinder). Therefore, the summation of all of the forces that act on the immersed body
would be

Fz 5

ð
V

dFz 5

ð
V

ρgdV5 ρgV

where V is the immersed volume of the element. This pressure force is equal to the force
of gravity on the liquid displaced by the object. For biomedical applications, this is useful
for designing any probe, which would be immersed within a biological fluid. Any cardio-
vascular implantable device would fall within this category as well.

Example

Determine the maximum buoyancy of a catheter that is inserted into the femoral artery of a

patient and is passed through the cardiovascular system to the coronary artery (see Figure 3.6).

The location where the catheter is inserted into the femoral artery is 50 cm below the aortic arch.

The coronary artery is 5 cm below the aortic arch. Assume that the maximum buoyancy would

occur at the end of systole on a normal healthy individual (120 mmHg). Also assume that the

catheter is perfectly cylindrical with a diameter of 2 mm.

Solution

Pressure at incision:

p1 5 120 mmHg1 1050
kg

m3

� �
9:81

m

s2

� �
ð50 cmÞ 1 m

100 cm

� �
1 mmHg

133:32 Pa

� �
5 158:63 mmHg

Catheter

Aorta

Femoral
artery

FIGURE 3.6 Catheter inserted at the femoral artery which is passed
to the coronary artery. These catheters are commonly used during sur-
geries to remedy atherosclerotic lesions.
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Pressure at coronary artery:

p2 5 120 mmHg1 1050
kg

m3

� �
9:81

m

s2

� �
ð5 cmÞ 1 m

100 cm

� �
1 mmHg

133:32 Pa

� �
5 123:86 mmHg

Volume of catheter from femoral artery to aortic arch:

V5π
2 mm

2

� �2

ð50 cmÞ5 1:57 cm3

Volume of catheter from aortic arch to coronary artery:

V5π
2 mm

2

� �2

ð5 cmÞ5 0:157 cm3

Buoyancy force on catheter:

F5 1050
kg

m3

� �
9:81

m

s2

� �
ð1:57 cm3Þ1 1050

kg

m3

� �
9:81

m

s2

� �
ð0:157 cm3Þ5 0:0178 N

Note that the force acting on the catheter was not affected by the absolute pressure in the

system because these values cancel when adding the pressure terms (see Equation 3.14).

3.3 CONSERVATION OF MASS

The previous two sections described the pressure distribution in static fluids. However,
in most biofluid mechanics problems, the fluid that we are interested in will be in motion
(with an acceleration component), and therefore, the previous analysis may not be applica-
ble or may not be the most accurate. In the following four sections, we will develop rela-
tionships that govern the general fluid movement. Our analysis for each of these four
sections will use a volume of interest (sometimes called a control volume) formulation,
because it is normally quite difficult to identify the same mass of fluid throughout time.
Remember that fluids under motion will deform, and therefore, some identifiable volume
must be defined so that the laws of motion can be applied (Figure 3.7 illustrates different
ways a fluid volume may be defined at different instances in time). The laws that govern a
system should be familiar from earlier courses in mechanics/thermodynamics. We will
extend these principles to a volume in the following formulations.

Fluid
element at

time 1
or

Fluid
element at

time 2

Fluid
element at

time 2

FIGURE 3.7 Two possible arrangements for a
fluid element after the fluid experienced some
motion. It is easier to maintain the control volume
square of time 1 to analyze the fluid, instead of
changing the volume of interest with time. This
image shows that there are multiple possible
arrangements for fluid elements after deforma-
tion, depending on the boundary conditions. It is
critical during the analysis of biofluid mechanics
problems to simplify these issues of deformability
by choosing control volumes wisely.
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First we will develop the conservation of mass principle for fluid mechanics. The basis
for this principle is that mass can neither be created nor destroyed within the volume/
system of interest. If the inflow mass flow rate is not balanced by the outflow mass flow
rate, then there will be a change in volume or density within the volume of interest. If the
inflow mass flow rate exceeds the outflow mass flow rate, mass will accumulate within the
system. If the reverse scenario is true, mass will be removed from the system. Under normal
conditions (e.g., not under strenuous activity), the blood volume within the heart remains
constant from beat to beat. Stated in other words, the mass ejected from the aorta and the
pulmonary arteries is recovered from the superior vena cava, the inferior vena cava, and
the pulmonary veins. However, you can imagine a case where the residual fluid mass
within the heart decreases from beat to beat. If you are experiencing severe blood loss due
to a laceration, early on the heart would continue to eject the normal amount of blood, but
the venous return would not be equal to this ejection volume. Therefore, the blood volume
in the heart would decrease. No matter what the case is regarding mass changes within the
volume of interest, mass must be conserved within the system of interest.

Before we move forward into the derivation of the conservation of mass of a system, we
will derive a general relationship for the time rate of change of a system property as a
function of the same property per unit mass of the volume (inherent property). This is
sometimes referred to as the Reynolds Transport Theorem (RTT) formulation. For mass
balance, the system property is mass and the inherent property is 1 (i.e., mass divided by
mass). For balance of linear momentum, the system property is momentum (P

-
) and the

inherent property is velocity (v
-
) (i.e., momentum divided by mass). For energy balance,

the system property is energy, E (or entropy, S) and the inherent property is energy per
unit mass, e (or entropy per unit mass, s). The system and volume of interest used in this
derivation will be a cube, but this same analysis technique can be applied to any geometry
(Figure 3.8). We will also assume that the shape remains the same, but this analysis holds
for deformation as well. The system and volume have been chosen so that there is a region
that overlaps at some later time (area 2). Mass from area 1 enters the volume of interest
during Δt and mass from area 3 exits the volume of interest during Δt.

The following derivation will relate the time rate of change of any system property (W)
to its inherent property (w). W and w are arbitrary properties that are only used for for-
mula derivation (RTT). This formulation starts by using the formula of a derivative:

dW

dt
5 lim

Δt-0

Wjt1Δt 2Wjt
Δt

t

Volume

System
1 2 3

t + Δt FIGURE 3.8 System and volume of interest used to derive
the formula for conservation laws. The system of interest is
shown by the gray shaded cube, and the volume of interest is
the dashed cube. To use this formulation, one would need to
know the change in time between the two states shown in this
figure.
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At any time t, the system is defined by the volume of interest, which keeps the same
shape at all times. At time t1Δt, the system occupies area 2 and 3, instead of area 1 and 2
(for time t). Again, regardless of the area encompassed by the volume of interest, the vol-
ume (and its dimensions) remains constant at all time. Therefore, the following definitions
apply for the system properties:

Wt 5Wvolume of interest 5WVI

Wt1Δt 5W2 1W3 5WVI 2W1 1W3

Using these definitions in the derivative formulation

dW

dt
5 lim

Δt-0

ðWVI 2W1 1W3Þjt1Δt 2 ðWVIÞjt
Δt

ð3:15Þ

which is equal to

dW

dt
5 lim

Δt-0

ðWVIÞjt1Δt 2 ðWVIÞjt
Δt

1 lim
Δt-0

ðW3Þjt1Δt

Δt
2 lim

Δt-0

ðW1Þjt1Δt

Δt
ð3:16Þ

The first term in Equation 3.16 is equal to

lim
Δt-0

ðWVIÞjt1Δt 2 ðWVIÞjt
Δt

5
@WVI

@t
5

@

@t

ð
V

wρdV ð3:17Þ

For the remaining two terms, a similar analysis can be conducted, to obtain

dW3 t1Δt 5wρdV t1Δt 5wρΔxdA t1Δtj
����

dW1 t1Δt 5wρdV t1Δt 5wρΔx 2 dAð Þ t1Δtj
���� ð3:18Þ

Remember that dV can be described as the change in length (i.e., from area 2 to area 3)
multiplied by the differential area (in general, the cube can move in three-dimensional
space). Also recall that a negative sign is included in the second term of Equation 3.18 to
take care of the direction that the normal area vector is facing. The change in length can
also be considered as the fluid path for any deformation that a fluid element can experi-
ence. The mass is moving to the right (Figure 3.8), but the area vector for area 1 is oriented
toward the left. If we integrate the two equations in 3.18, we getð

area 3

dW3jt1Δt 5W3jt1Δt 5

ð
area 3

wρΔxdAjt1Δt

ð
area 1

dW1jt1Δt 5W1jt1Δt 5

ð
area 1

wρΔxð2 dAÞjt1Δt

ð3:19Þ

Substituting these values into Equation 3.16,

lim
Δt-0

ðW3Þjt1Δt

Δt
5

ð
area 3

wρΔxdA

Δt
5

ð
area 3

wρV
-
ΔdA

-
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lim
Δt-0

ðW1Þjt1Δt

Δt
5

ð
area 1

wρΔxð2 dAÞ

Δt
52

ð
area 1

wρV
-
ΔdA

- ð3:20Þ

The previous equation uses the equalities for

lim
Δt-0

Δx

Δt
5 v

-

dA5 dA
-

to change the quantities into vector form. Combining Equations 3.17 and 3.20 into
Equation 3.16,

dW

dt
5

@

@t

ð
V

wρdV1

ð
area 3

wρv-UdA
-
1

ð
area 1

wρv-UdA
- ð3:21Þ

The entire system of interest consists of areas 1, 2, and 3, and we can make the assumption
that there is no change in flow within region 2 during the time interval of Δt (this is why
we choose to overlap the systems from the two time intervals). Therefore, v

-
is zero for

area 2, and we can combine the two area integrals in Equation 3.21 into a general form,
where “area” is equal to area 1 plus area 3.

dW

dt
5

@

@t

ð
V

wρdV1

ð
area

wρv-UdA
- ð3:22Þ

When developing the formulation for the time rate of change of a system property, we
took the limit of the system as time approached zero. This forces the relationship to be
valid at the instant when the system and the control volume completely overlap. The first
term of Equation 3.22 is the time rate of change of any arbitrary system property (W). The
second term in Equation 3.22 is the time rate of change of the inherent property within the
volume of interest (w). The third term in Equation 3.22 is the flux of the property out of
the surface of interest or into the surface of interest. From this relationship, all of the con-
servation laws can be derived by substituting the appropriate system property and inher-
ent property, which were described above.

In Chapter 2, we defined conservation of mass as

msystem 5min 2mout 2
dðρVÞ
dt

ð2:1Þ
In a more concise form, mass balance can be stated as

dm

dt

���
system

5 0 ð3:23Þ

The mass of a system can be defined as

msystem 5

ð
m�system

dm5

ð
V2 system

ρdV
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Substituting the appropriate values for mass into Equation 3.22,

dm

dt

���
system

5
@

@t

ð
V

ρdV1

ð
area

ρv-UdA
-
5 0 ð3:24Þ

The previous equation (Equation 3.24) describes the changes in mass within a system of
interest. The first term (right-hand side of Equation 3.24), describes the time rate of change
of the mass within the volume of interest. This includes any possible change in density
within the volume or changes within the volume itself. The second term (right-hand side),
describes the mass flux into/out of the surfaces of interest. Mass that is entering into the
volume of interest would be considered a negative flux (because the velocity vector acts in
an opposite direction to the area vector), whereas mass leaving the volume of interest
would be a positive flux (the velocity and the area vectors are acting in the same direction).
By the conservation of mass principle, the time rate of change of mass within the volume of
interest has to be balanced by the flux of mass into/out of the volume of interest.

Equation 3.24 can be simplified in specific fluid cases. For an incompressible flow, there
is no change in density with time/space. This simplifies Equation 3.24 to

dm

dt

���
system

5 ρ
@V

@t
1 ρ

ð
area

v
-
UdA

-
5 0 ð3:25Þ

because the volume integral of dV is simply the volume of interest. By canceling out the
density terms and making a further assumption that the volume of interest does not
change with time, Equation 3.25 becomes

dm

dt

����
system

5

ð
area

v
-
UdA

-
5 0 ð3:26Þ

A volume that does not change with time would be considered non-deformable. This is
not always a good assumption in biofluids because blood vessels change shape when the
heart’s pressure pulse is passed through it. Also, the lungs use a shape change to drive the
flow of air into or out of the system. However, in some biofluid cases, it might be
acceptable to make this assumption. In this textbook, we will assume that our volume of
interest is non-deformable unless stated otherwise. Equation 3.26 does not make an assump-
tion on the flow rate (i.e., is it steady or does it change with time), so this equation is valid
for any incompressible flow through a non-deformable volume. Although, remember that
by definition, steady flows can have no fluid property that changes with time. Therefore,
the first integral term in Equation 3.24 would be equal to zero. So for a general compressible
steady flow situation, Equation 3.24 would simplify to the mass flux equation:ð

area

ρv-UdA
-
5 0 ð3:27Þ

In fluid mechanics, the integral represented in Equation 3.26 is commonly referred to as
the volume (or volumetric) flow rate, Q. For an incompressible flow through a non-
deformable volume, the volume flow rate into the volume must be balanced by the flow
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out of the volume. However, the volume flow rate can be calculated at any one location at
any time within the system of interest. Its definition would be

Q5

ð
area

v
-
UdA

- ð3:28Þ

The volume flow rate divided by area is defined as the average velocity at a particular
section of interest:

vavg 5
Q

A
5

1

A

ð
area

v
-
UdA

- ð3:29Þ

From the special cases that we have discussed, as well as the general formula, we can
now use the conservation of mass to solve various fluid mechanics problems.

Example

Determine the velocity of blood at cross-section 4 of the aortic arch schematized in Figure 3.9.

Assume that the diameter of the blood vessel is 3 cm, 1.5 cm, 0.8 cm, 1.1 cm, and 2.7 cm at cross

sections 1, 2, 3, 4, and 5, respectively. Branches 2, 3, and 4 make a 75�, 85�, and a 70� angle with

the horizontal direction, respectively. The velocity is 120 cm/s, 85 cm/s, 65 cm/s, and 105 cm/s

at 1, 2, 3, and 5, respectively. There is inflow at 1 and outflow at all of the remaining locations.

Assume steady-flow at this particular instant in time and that the volume of interest is non-

deformable.

Solution

Figure 3.10 highlights the given geometric constraints in this problem. The gray dashed box on

this figure represents one of the possible choices for the volume of interest. We will also make the

assumption that blood density does not change and has a value of 1050 kg/m3.

2
3

4

51

FIGURE 3.9 Schematic of the aortic arch.

2 3

4

51

X

75°
85° 

70°
Y

FIGURE 3.10 Figure associated with the in-text example.
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We can directly apply Equation 3.26 because we have made the assumption that the density

does not change with time, that the volume is not deformable, and that the flow is steady:ð
area

v
-
UdA

-
5 0 ð3:26Þ

Equation 3.26 will further simplify to the volume flow rate at each location because of the

same assumptions. Therefore,

2 v1A1 1 v2A2 1 v3A3 1 vA4 1 v5A5 5 0

The area at each location is

Location Area

1 π 3 cm
2

� �2
5 7:069 cm2

2 π 1:5 cm
2

� �2
5 1:767 cm2

3 π 0:8 cm
2

� �2
5 0:503 cm2

4 π 1:1 cm
2

� �2
5 0:950 cm2

5 π 2:7 cm
2

� �2
5 5:726 cm2

Substituting the known values into the previous equation,

v4 5
v1A1 2 v2A2 2 v3A3 2 vA5

A4

v45
ð120cm=sÞð7:069 cm2Þ2ð85cm=sÞð1:767 cm2Þ2ð65cm=sÞð0:503 cm2Þ2ð105cm=sÞð5:726 cm2Þ

0:950 cm2

567:54
cm

s

This velocity would flow at a 75� angle off the positive x-axis. The inflow at location 1
was negative because the velocity vector acts in an opposite direction to the area normal
vector (at all other locations they act in the same direction). To simplify this procedure, if
it is known that the flow is inflow, you can assume that it has a negative sign associated
with this term, whereas outflow can be assumed to have a positive sign. Density was not
used in any of the formulations because it would cancel out in each term. This problem
also illustrates that it does not matter which direction (x or y) the velocity is acting,
because all of the mass needs to be conserved.

Example

Calculate the time rate of change in air density during expiration. Assume that the lung (see

Figure 3.11) has a total volume of 6000 mL, the diameter of the trachea is 18 mm, the air flow
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velocity out of the trachea is 20 cm/s, and the density of air is 1.225 kg/m3. Also assume that

lung volume is decreasing at a rate of 100 mL/s.

Solution

Starting from Equation 3.24,

@

@t

ð
V

ρdV1

ð
area

ρv-UdA
-
5 0

Assume that at the instant in time that we are measuring the system, density is uniform

within the volume of interest. This allows us to remove density from within the first integral:

@

@t

ð
V

ρdV1

ð
area

ρv-UdA
-
5 0 ð3:24Þ

@

@t
ρ
ð
V

dV1

ð
area

ρv-UdA
-
5 0

@

@t
ðρVÞ1 ρv-A5 0

Using the chain rule,

V
@ρ
@t

1 ρ
@V

@t
52 ρv-A

Solving this equation with the known values,

@ρ
@t

5
2 ρv-A2 ρ @V

@t

V

5
2 ð1:225 kg=m3Þð20 cm=sÞ π � 18 mm

2

� �2� �
2 ð1:225 kg=m3Þð2100 mL=sÞ

6000 mL
5 0:01

kg

m3s

FIGURE 3.11 Schematic of the lung.
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3.4 CONSERVATION OF MOMENTUM

Newton’s second law of motion can be written in terms of linear momentum, which is
its most general form:

F
-
5

dðP-Þ
dt

ð3:30Þ

For this analysis, we want to develop a relationship for the linear momentum within a
volume of interest. We will follow a similar technique as that used to develop a relationship
for the conservation of mass within a volume of interest. As we alluded to, prior to develop-
ing Equation 3.22, we know the system property (P

-
) and its inherent property (v

-
), but we

will take some space to define linear momentum and how it relates to fluid mechanics.
Linear momentum is defined as

P
-
5

ð
system mass

v
-
dm5

ð
V

v
-ρdV ð3:31Þ

for a volume of interest. Also, recall from an earlier discussion that the summation of the
forces that act on a fluid element must include all body forces (denoted as F

-

b) and all sur-
face forces (denoted as F

-

s). Physically, linear momentum is a force of motion, which is
conserved unless other forces are applied to the system. By substituting the system prop-
erty and the inherent property into Equation 3.22, we can get the formulation for conserva-
tion of linear momentum:

dP

dt
5

@

@t

ð
V

v
-ρdV1

ð
area

v
-ρv-UdA

- ð3:32Þ

Using Newton’s relationship for momentum, Equation 3.32 can be represented as

dP

dt
5 F

-
5 F

-

b 1 F
-

s 5
@

@t

ð
V

v
-ρdV1

ð
area

v
-ρv-UdA

- ð3:33Þ

Equation 3.33 states that the summation of all forces acting on a volume of interest is
equal to the time rate of change of momentum within the control volume and the summa-
tion of momentum entering or leaving through the surface of interest. To solve conservation
of momentum problems, the first step will be to define the volume of interest and surfaces
of interest and label all of the forces that are acting on this system. This also applies when
you choose to define a coordinate system that is either aligned with or not aligned with the
majority of the forces; you will still need to define all forces and how they relate to the cho-
sen coordinate axis (remember the example of a block sliding down an incline from
Chapter 2). If the standard Cartesian coordinate system is chosen, then gravity aligns with
one of the axes, and typically gravity will be the only body force that acts on the system.
Surface forces are due to externally applied loads and are normally denoted through a pres-
sure acting on the system. The generalized surface force will be represented as

F
-

s 5

ð
area

2 pdA
-
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The negative sign in this formulation is added to maintain the sign convention for the
forces acting on the system (see Figure 3.12). In Figure 3.12, the pressure is positive, but
because the pressure and the area vectors act in opposite directions, their vector product
would be a negative force, which does not correspond with the positive directions chosen
for the coordinate system.

Unlike the conservation of mass formula, the formulas derived for the conservation for
linear momentum are vector equations (compare with aortic arch example for conservation
of mass). Equation 3.33 written in component form is:

Fx 5 Fbx 1 Fsx 5
@

@t

ð
V

uρdV1

ð
area

uρv-UdA
-

Fy 5 Fby 1 Fsy 5
@

@t

ð
V

vρdV1

ð
area

vρv-UdA
-

Fz 5 Fbz 1 Fsz 5
@

@t

ð
V

wρdV1

ð
area

wρv-UdA
-

ð3:34Þ

where u, v, and w are the velocity components in the x-, y- and z-directions, respectively.
As before, the product of ρv-UdA

-
is a scalar whose sign depends on the directions of the nor-

mal area vector and the velocity vector. If these two vectors act in the same direction, the
product of the vectors is positive; if they act in opposite directions, then the product is nega-
tive. Remember that the velocity vector (v

-
) in this product is not a component of velocity

but is the entire velocity vector. In scalar notation, the entire form of the product would be
represented as 6jρν2Acosαj, where α is defined by the coordinate system of choice and the
positive or negative sign is defined through the velocity/normal area vectors relationship
and the direction of the velocity component. This angle appears for the u, v, and w direc-
tional velocities. However, remember that the product of v

-ρv-UdA
-

is a vector, and the sign
of this product depends on the coordinate system chosen (this defines the velocity vector
sign) and the sign of the scalar. The application of these sign conventions will become
apparent in some of the example problems. To determine the sign of the momentum flux
through a surface, first determine the sign associated with jρνAcosαj, and then determine

dAp

Y

X

Z

FIGURE 3.12 Pressure force acting on a surface of interest.
Recall that the area vector for this surface would act in the negative
x-direction, whereas the pressure forces are acting in the positive
x-direction.
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the sign of each velocity component (u, v, and w). By knowing the signs of these two parts,
the sign of the overall product can be determined.

Example

Determine the force required to hold the brachial artery in place during peak systole

(Figure 3.13). Assume at the inlet the pressure is 100 mmHg and at the outlet the pressure is

85 mmHg (these are gauge pressures). The diameter of the brachial artery is 18 mm at the inflow

and 16 mm at the outflow. The blood flow velocity at the inlet is 65 cm/s. For simplicity, neglect

the weight of the blood vessel and the weight of the blood within the vessel.

Solution

Figures 3.13 and 3.14 depict what is known about the situation. The problem statement asks

to solve for Fx and Fy.

To solve this problem, assume that there is steady flow at the instant in time that we are inter-

ested in, that 1 atm5 760 mmHg, that the blood vessel does not move and is not deformable,

and that the flow is incompressible. First, we will need to solve for the outflow velocity using

the equations for conservation of mass:

dm

dt

����
system

5
@

@t

ð
V

ρdV1

ð
area

ρv-UdA
-
5 0 ð3:24Þ

ð
area

ρv-U dA
-��� ���5 0-ρ1v1A1 5 ρ2v2A2

ð1050 kg=m3Þð65 cm=sÞ π 18 mm
2

� �2� �
ð1050 kg=m3Þ π 16 mm

2

� �2� � 5 v2 5 82:27 cm=sð2 ĵÞ

Note that the velocity accelerates due to the step down nature of the geometry. This is not

representative of what occurs in physiology, but this problem illustrates how to use conservation

of mass and momentum together.

Solve for the x-component of the force needed to hold the brachial artery in place:

Fx 5 Fbx 1 Fsx 5
@

@t

ð
V

uρdV1

ð
area

uρv-UdA
-

Fbx 5 0; u2 5 0

Fsx 5 pinflowAinflow 1 patmA1 2 patmðAinflow 1A1Þ1Fx 5Ainflowðpinflow 2 patmÞ1Fx

Ainflowðpinflow 2 patmÞ1Fx 5

ð
area

uρv-UdA
-
5 u1 � ð2 ρvinflowAinflowÞ

Note that the u component of the velocity is positive, but the flux is negative because the

velocity vector and the normal area vector act in opposite directions.
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Fx 52uρvAinflow 2Ainflowðpinflow 2 patmÞ52uρvinflowAinflow 2Ainflowðpinflow2 gaugeÞ

Fx 52 ð65 cm=sÞð1050 kg=m3Þð65 cm=sÞ π
18 mm

2

� �2
 !

2 π
18 mm

2

� �2
 !

ð100 mmHgÞ523:5 N

This means that this force acts toward the left because the flow/pressure is pushing toward

the right. Now solve for the y-component of force:

Fy 5 Fby 1 Fsy 5
@

@t

ð
V

vρdV1

ð
area

vρv-UdA
-

Fby 5 0; v1 5 0

Fsy 5 poutflowAoutflow 1 patmA2 2 patmðAoutflow 1A2Þ1 Fy 5Aoutflowðpoutflow 2 patmÞ1Fy

Aoutflowðpoutflow 2 patmÞ1Fy 5

ð
area

vρv-UdA
-
5 v2 � ðρVoutflowAoutflowÞ

Note that the v2-velocity component is negative (this will be accounted for later) and the flux

term is positive because the area and the velocity vectors act in the same direction.

Fy 5 v2 � ðρvoutflowAoutflowÞ2Aoutflowðpoutflow 2 patmÞ5 v2 � ðρvoutflowAoutflowÞ2Aoutflowðpoutflow2gaugeÞ

Fy5ð282:27 cm=sÞð1050 kg=m3Þð82:27cm=sÞ π
16mm

2

� �2
 !

2 π
16mm

2

� �2
 !

ð85mmHgÞ522:42 N

This means that this force acts downward. The overall force is 4.25 N acting at an angle of

214� from the positive x-axis.

Outflow

Inflow
FIGURE 3.13 Brachial artery schematic for example problem.

X

A2

Fx

Fy

Y

vinflow Pinflow

Volume of interest

voutflow

Poutflow

Aoutflow Patm

Patm

Patm

Patm

A1

Ainflow

FIGURE 3.14 Free body
diagram for the preceding
example problem.
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3.5 MOMENTUM EQUATION WITH ACCELERATION

In deriving Equation 3.33, we made an assumption that the volume of interest (and the
fluid within the volume) had no acceleration at the instant in time that we were evaluating
the system. Therefore, this equation does not hold for a volume of interest or system of
interest that is accelerating. This is the case because typically when evaluating an accelerat-
ing system, you would use an inertial or fixed coordinate system (normally denoted as
XYZ) instead of a reference (or relative) coordinate system, which follows the moving vol-
ume (normally denoted as xyz). In the previous derivations, a relative coordinate system
was used for simplicity. Furthermore, Equation 3.33 does not hold for an inertial reference
frame because the relative momentum for each system is not the same:

F
-
5

dP
-

xyz

dt
6¼ dP

-

XYZ

dt

In order to develop an equivalent formulation as Equation 3.33, for an accelerating control
volume, a relationship between the inertial momentum (P

-

XYZ) and the control volume
momentum (P

-

xyz) must be found. To start, let us define Newton’s second law in terms of
momentum and a system of interest:

F
-
5

dP
-

XYZ

dt
5

d

dt

ð
system2mass

v
-

XYZdm5

ð
system2mass

dv
-

XYZ

dt
dm ð3:35Þ

To define the inertial velocity component in terms of the system velocity, use the
following relationship:

v
-

XYZ 5 v
-

xyz 1 v
-

r ð3:36Þ
where v

-
r is the velocity of the volume of interests reference frame relative to the inertial

reference frame. Making the assumption that the fluid is irrotational,

dv
-

XYZ

dt
5 a

-
XYZ 5

dv
-

xyz

dt
1

dv
-

r

dt
5 a

-
xyz 1 a

-
r ð3:37Þ

In Equation 3.37, the first acceleration term ( a
-

XYZ) is the acceleration of the system rela-
tive to the inertial frame, the second acceleration term ( a

-
xyz) is the acceleration of the sys-

tem relative to the system reference frame, and the third acceleration term ( a
-

r) is the
acceleration of the system reference frame relative to the inertial reference frame. A rota-
tional system would have multiple accelerations terms (see discussion below). Substituting
the acceleration terms into Equation 3.35,

F
-
5

ð
system2mass

dv
-

XYZ

dt
dm5

ð
system2mass

dv
-

xyz

dt
dm1

ð
system2mass

a
-

rdm

F
-
2

ð
system2mass

a
-

rdm5

ð
system2mass

dv
-

xyz

dt
dm5

dP
-

xyz

dt
ð3:38Þ
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Substituting Equation 3.33 and converting the mass integral into a volume integral,
Equation 3.38 becomes

F
-

b 1 F
-

s 2

ð
V

a
-

rρdV5
@

@t

ð
V

v
-

xyzρdV1

ð
area

v
-

xyzρv
-

xyzUdA
- ð3:39Þ

To account for the acceleration of an inertial body, relative to the inertial reference
frame, the conservation of linear momentum formulation requires one extra term. When
the system is not accelerating relative to the inertial frame, a

-
r is zero and Equation 3.39

simplifies to Equation 3.33. To apply Equation 3.39 to a system, it is required that there are
two coordinate systems defined at the beginning of the problem; one is inertial coordinate
system (XYZ), and the other stays with the moving control volume (xyz). This formula is
valid for one instant in time, similar to Equation 3.33. However, it is possible in particular
situations that the mass (i.e.,F

-

b; ρ) and the acceleration ( a
-

r) are functions of time. This
equation can easily be adapted for that scenario. Also, Equation 3.39 is a vector equation,
with all velocity components related to the non-inertial reference frame (xyz). Written in
component form, Equation 3.39 becomes

F
-

bx 1 F
-

sx 2

ð
V

a
-

rxρdV5
@

@t

ð
V

uxyzρdV1

ð
area

uxyzρv
-

xyzUdA
-

F
-

by 1 F
-

sy 2

ð
V

a
-

ryρdV5
@

@t

ð
V

vxyzρdV1

ð
area

vxyzρv
-

xyzUdA
-

F
-

bz 1 F
-

sz 2

ð
V

a
-

rzρdV5
@

@t

ð
V

wxyzρdV1

ð
area

wxyzρv
-

xyzUdA
-

ð3:40Þ

Example

One of the first implantable mechanical heart valves was designed as a ball within a cage that

acted as a check valve. Using the conservation of momentum (with acceleration), we will model

the acceleration of the ball after it is hit by a jet of blood being ejected from the heart

(Figure 3.15). The ball has a turning angle of 45� and a mass of 25 g. Blood is ejected from the

heart at a velocity of 150 cm/s, through an opening with a diameter of 27 mm. Determine the

velocity of the ball at 0.5 sec. Neglect any resistance to motion (except mass).

X

A, vinflow vball

45↓
m

Y

FIGURE 3.15 Acceleration of a ball and cage mechanical heart valve
for the in-text problem.
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Solution

The inertial reference frame is chosen at the aortic valve and the non-inertial reference frame

is chosen to coincide with the ball. With the volume of interest chosen to coincide with the flow

direction around the ball, Figure 3.16 represents the flow situation. We will only analyze half of

the equation, because the flow is symmetrical around the uniform ball.

F
-

bx 1 F
-

sx 2

ð
V

a
-

rxρdV5
@

@t

ð
V

uxyzρdV1

ð
area

uxyzρv
-

xyzUdA
-

If we make the assumption that the blood flow is steady and uniform, the equation reduces to

2

ð
V

a
-

rxρdV5

ð
area

uxyzρv
-

xyzUdA
-

because there are no external forces acting on the system. Substituting known values into this

equation, we get

2

ð
V

a
-

rxρdV5 u1 2
ρv1A1

2

� �
1 u2ðρv2A2Þ

We will make the assumption that as blood flows around the ball, there is no loss of velocity

(and the area does not change) due to friction between the ball and blood. We will also assume

that there is no change in velocity between the aortic valve location and the ball. This makes the

magnitude of the following quantities

v1
2

5u1 5 u2 5 v1 5 v2 5 vinlet 2 vball

which is the relative velocity, the same. Furthermore, the area can be defined as

A1

2
5A2 5A3 5A

Simplifying each term of the momentum equation and only considering the top half of the

ball: ð
V

a
-

rxρdV5 a
-

rxρV5 a
-

rxm5
dvball
dt

m

Location 2
A2, v2

Location 1
A1, v1

Location 3
A3, v3

x

m

y
FIGURE 3.16 Free body diagram for preceding example problem.
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u1ð2 ρv1AÞ5 ðvinlet 2 vballÞð2 ρðvinlet 2 vballÞAÞ52 ρAðvinlet 2 vballÞ2

u2ðρv2AÞ5 ðvinlet 2 vballÞcosð45�Þðρðvinlet 2 vballÞAÞ5 ρAðvinlet 2 vballÞ2cosð45�Þ

Substituting these values into the simplified conservation of momentum equation,

2
dvball
dt

m52 ρAðvinlet 2 vballÞ2 1 ρAðvinlet 2 vballÞ2cosð45�Þ5 ðcosð45�Þ21ÞρAðvinlet 2 vballÞ2

To solve this differential equation, we must separate the variables as follows:

dvball

ðvinlet 2 vballÞ2
5

ð12 cosð45�ÞÞρA
m

dt

Integrate this equation as shown:

ðvball2max

0

dvball

ðvinlet 2 vballÞ2
5

ðt
0

ð12 cosð45�ÞÞρA
m

dt

1

ðvinlet 2 vballÞ

����
vball2max

0

5
ð12 cosð45�ÞÞρA

m

����
t

0

5
ð12 cosð45�ÞÞρAt

m

1

ðvinlet 2 vballÞ
2

1

vinlet
5

vball
vinletðvinlet 2 vballÞ

5
ð12 cosð45�ÞÞρAt

m

Solving this equation for vball,

vball
v2inlet 2 vinletvball

5
ð12 cosð45�ÞÞρAt

m

vball 5 ðv2inlet 2 vinletvballÞ
ð12 cosð45�ÞÞρAt

m

� �

5 v2inlet
ð12 cosð45�ÞÞρAt

m

� �
2 vinletvball

ð12 cosð45�ÞÞρAt
m

� �

vball 1 vinletvball
ð12 cosð45�ÞÞρAt

m

� �
5 vball 11 vinlet

ð12 cosð45�ÞÞρAt
m

� �� �

5 v2inlet
ð12 cosð45�ÞÞρAt

m

� �

vball 5 v2inlet
ð12 cosð45�ÞÞρAt

m 11 vinlet
ð12 cosð45�ÞÞρAt

m

� �� �
0
@

1
A5 v2inlet

ð12 cosð45�ÞÞρAt
m1 vinletðð12 cosð45�ÞÞρAtÞ

� �

5 ð150 cm=sÞ2 ð12 cosð45�ÞÞð1050 kg=m3Þ π2 27 mm
2

� �2
t

25g1 ð150 cm=sÞ ð12 cosð45�ÞÞð1050 kg=m3Þ π2 27 mm
2

� �2
t

� �
0
@

1
A

5
198 gm=s2 � t

25 g1 132 g=s � t
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To account for the bottom half of the flow,

vball 5 2
198 g�m=s2 � t

25 g1 132 g=s � t

� �

At t5 0.5 sec,

vball 5 2
198 g�m=s2 � 0:5 s

25 g1 132 g=s � 0:5 s

� �
5 218 cm=s

This is consistent with a rapid opening of the valve, but the total length that the ball would

traverse would only be approximately 4 cm (at most). Over time, the velocity of the ball would

follow a logarithmic relationship (Figure 3.17), if there was no mechanism to stop the ball from

moving (i.e., the cage).

We made the assumption in the derivation of Equation 3.40, that the flow was irrota-
tional, and therefore it only experienced pure translation. We will not show the derivation
of the formula here, but the most general formula for the conservation of momentum must
include all possible velocity components. This formula takes the form of

F
-

b 1 F
-

s 2

ð
V

ð a-r 1 2 ω- 3 v
-

xyz 1 ω- 3 ðω- 3 r
-Þ1 ω- 3 r

-ÞρdV

5
@

@t

ð
V

v
-

xyzρdV1

ð
area

v
-

xyzρv
-

xyzUdA
-

ð3:42Þ

where ω is the angular velocity (note: ω-3 v
-

xyz is the Coriolis acceleration, ω-3 ðω-3 r
-Þ is

the centripetal acceleration, and ω-3 r
-

is the tangential acceleration due to angular veloc-
ity). This formula would be used if the fluid elements rotate and translate about each other
or some reference coordinate axis (XYZ).

0
0

50

100

150

V
el

oc
ity

 (
cm

/s
)

200

250

300

0.25 0.5 0.75

Time (sec)

1 1.25 1.5 1.75 2

FIGURE 3.17 Velocity of the ball
with respect to time.
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3.6 THE FIRST AND SECOND LAWS OF THERMODYNAMICS

The conservation of energy within a system is defined by the first law of thermodynam-
ics, which is

_Q2 _W 5
dE

dt
_Q is the time rate of change of heat transfer and is positive when heat is added to the sys-
tem. _W is the time rate of change of work and is positive when work is done by the sys-
tem. The energy of a system can be defined as

E5

ð
V

eρdV5

ð
V

u1
v2

2
1 gz

� �
ρdV ð3:43Þ

where e is the energy per unit mass, u is the specific internal energy of the system, v is the
speed of the system (not velocity), and z is the height of the system relative to a reference
point. From physics class, this is similar to a statement of the total energy of the system,
including potential energy, kinetic energy, and any other internal energy. In developing
Equation 3.22, we stated that for energy conservation the system property was E and the
inherent property was e. Substituting these values into Equation 3.22, we have a statement
for the conservation of energy:

dE

dt
5

@

@t

ð
V

eρdV1

ð
area

eρv-UdA
- ð3:44Þ

If we define the system to be the same as the volume of interest at the instant in time
that is of interest to us, we can make the following statement:

_Q2 _W
���
system

5 _Q2 _W
���
volume of interest

Substituting this into Equation 3.44, we get

_Q2 _W 5
@

@t

ð
V

eρdV1

ð
area

eρv-U dA
-��� ���

5
@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV1

ð
area

u1
v2

2
1 gz

� �
ρv-UdA

-
ð3:45Þ

In general, the rate of work is hard to quantify in fluid mechanics. Typically, in fluid
mechanics, work is divided into four categories: work from normal stresses (Wn), work
from shear stresses (Wsh), shaft work (Ws), and any other work (Wo).

From a physics course, you should remember that work is defined by force multiplied
by the distance that the force acts over. When describing the work on a differential
element,

dW 5 F
-
Udx

-
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The normal force, acting on a differential element would be defined as

dF
-
5σNdA

-

To define the time rate of change of work,

_Wn 5 lim
Δt-0

@W

Δt
5 lim

Δt-0

F
-
Udx

-

Δt
5 σNdA

-
Uv
-

because
dx
-

dt
5 v

-
. Therefore, the total work done by normal forces is

_Wn 52

ð
area

σN v
-
UdA

- ð3:46Þ

where the negative sign is needed to quantify the work done on the control volume
instead of by the control volume.

The work of a shear force is defined in a similar way. Remember that shear force is
defined as

dF
-
5 τ- dA

In this formulation, the shear stress is the vector quantity (to provide directionality of
the stress which is different from the area vectors direction) not the area normal vector.
Using the same process as above, the work of shear becomes

_Wsh 52

ð
area

τ- Uv
-
dA ð3:47Þ

The work done by a shaft is not applicable to many biofluid mechanics problems, but
would be defined as the negative of work input into the shaft to move the fluid. Similarly,
other work would need to be defined by the type of work that is being done. For instance,
if energy from an x-ray is being absorbed into the fluid, this can be considered as work
being absorbed by the system. Using these definitions, Equation 3.45 becomes

_Q1

ð
area

σN v
-
UdA

-
1

ð
area

τ- Uv
-
dA2 _Wshaft2 _Wother

5
@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV1

ð
area

u1
v2

2
1 gz

� �
ρv-UdA

-

_Q1

ð
area

τ- Uv
-
dA2 _Wshaft 2 _Wother 5

@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV

1

ð
area

u1
v2

2
1 gz

� �
ρv-UdA

-
2

ð
area

σN v
-
UdA

-

We make use of the definition of specific volume (ν):

ρ5
1

ν
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and then we combine like integrals to get

_Q1

ð
area

τ- Uv
-
dA2 _Wshaft 2 _Wother

5
@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV1

ð
area

u1
v2

2
1 gz

� �
ρV
-
UdA

-
2

ð
area

σNνρv
-
UdA

-

5
@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV1

ð
area

u1
v2

2
1 gz2σNν

� �
ρv-UdA

-

From a previous discussion, we have defined that the normal stress is equal to the nega-
tive of the hydrostatic pressure (in most cases without large viscous effects), therefore,

_Q1

ð
area

τ- Uv
-
dA2 _Wshaft 2 _Wother 5

@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV

1

ð
area

u1
v2

2
1 gz1 pν

� �
ρv-UdA

-
ð3:48Þ

Example

One of the functions of the cardiovascular system is to act as a heat exchanger, to maintain

body temperature (see Figure 3.18). Calculate the rate of heat transfer through a capillary bed,

assuming that the blood velocity into the capillary is 100 mm/s and the flow velocity out of the

capillary bed is 40 mm/s. The pressure on the arterial side is 20 mmHg, and the pressure on the

venous side is 12 mmHg. Assume that the arteriole diameter is 75 μm and the venule diameter is

50 μm. The temperature on the arterial side is 35�C, and the temperature on the venous side is

33�C. Assume that the power put into the system throughout the muscular system is 15 μW.

Solution

To solve this problem, we will make the assumptions that the flow is steady, uniform, the

height difference between the arterial side and venous side is zero, and there is negligible inter-

nal energy or work done by stresses in the capillary bed. The conservation of mass does not hold

across the capillary bed, because fluid is lost into the interstitial space:

_Q1

ð
area

τ- Uv
-
dA2 _Wshaft 2 _Wother 5

@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV1

ð
area

u1
v2

2
1 gz1 pν

� �
ρv-UdA

-

Arterial side
Capillary bed

Venous side

Wmuscle FIGURE 3.18 Schematic of a capillary heat
exchanger for the example problem.
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_Q5 _Wmuscle 1

ð
area

u1
v2

2
1 gz1 pν

� �
ρv-UdA

-

_Q5 _Wmuscle 1
v21
2

1 gz1 1 p1ν1

� �
ð2 ρv1A1Þ1

v22
2

1 gz2 1 p2ν2

� �
ðρv2A2Þ

Substituting known values into this equation,

_Q5 15 W1
ð100 mm=sÞ2

2
1 gz1 1

20 mmHg

1050 kg=m3

� �
2 ð1050 kg=m3Þð100 mm=sÞπ 75 μm

2

� �2
 !

1
ð40 mm=sÞ2

2
1 gz2 1

12 mmHg

1050 kg=m3

� �
ð1050 kg=m3Þð40 mm=sÞπ 50 μm

2

� �2
 !

5 15 W1 ð21 μW 2 ð4:64E 24 g=sÞgz1Þ1 ð0:126 μW 1 ð8:25E 25 g=sÞgz2Þ
5 14:126 W2 ð3:814E 24 g=sÞgðz2 2 z1Þ

We are making the assumption that there is no height difference between the arterial side and

venous side (z25 z1).

Therefore, the rate of heat transfer is 14.126 μW. For every millimeter difference in height, the

rate of heat transfer would change by approximately 4 nW. The addition or subtraction of heat

would depend on if the arterial side or the venous side was higher.

Example

Calculate the time rate of change of mass flow rate (ρvA) of air entering the lungs. Assume

that the lungs have a capacity of 6 L. The temperature of the lungs is 37�C. The air pressure

inside of the lungs is 0.98 atm. At the instant that air enters the lungs, the temperature of

the lungs raises by 0.0001�C/s. The height of the trachea is 20 cm. Assume that there is no work

added to the system. Assume that air behaves as an ideal gas. Assume that the velocity is slow

within the trachea.

Solution

_Q1

ð
area

τ- Uv
-
dA2 _Wshaft 2 _Wother 5

@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV

1

ð
area

u1
v2

2
1 gz1 pν

� �
ρv-UdA

-

From the assumptions made, the given equation can simplify to

05
@

@t

ð
V

ðu1 gzÞρdV1

ð
area

ðu1 gz1 pνÞρv-UdA
-
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05
@

@t

ð
V

ðu1 gzÞρdV1 ðu1 gz1 pνÞð2 ρvAÞ5 @

@t
ðu1 gzÞm	 


2 ðu1 gz1 pνÞð _mÞ

5
@

@t
ðum1 gzmÞ2 ðu1 gz1 pνÞð _mÞ

5
@

@t
ðumÞ1 @

@t
ðgzmÞ2 u

@m

@t
2 gz

@m

@t
2 pν

@m

@t

5m
@u

@t
1u

@m

@t
1m

@gz

@t
1 gz

@m

@t
2 u

@m

@t
2 gz

@m

@t
2 pν

@m

@t
5m

@u

@t
2 pν

@m

@t

_m5
m

pν
@u

@t

Because we are making the assumption that air will behave like an ideal gas, we can make

the following substitutions:

m5 ρV

pν5RT

@u

@t
5Cv

dT

dt

to get

_m5
m

pν
@u

@t
5

ρV
RT

Cv
dT

dt
5

pV

R2T2
Cv

dT

dt

_m5
3:98 atm � 6L

ð287 Nm=kgkÞ2ðð371 273ÞKÞ2 ð717 Nm=kgkÞð0:0001K=sÞ5 3:24E 24 g=min

This is consistent with normal breathing.

The second law of thermodynamics is a statement about the disorder of a system. It
states that the change of entropy of a system is greater than or equal to the amount of heat
added to the system at a particular temperature:

dS$
dQ

T
ð3:49Þ

The time rate of change of entropy can therefore be defined as

dS

dt
$

_Q

T
ð3:50Þ

for one specific volume of interest. When developing Equation 3.22, we stated that for
energy conservation the system property was S and the inherent property was s (entropy
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per unit mass). Substituting these values into Equation 3.22, we have a statement for the
conservation of energy related to the second law of thermodynamics:

dS

dt
5

@

@t

ð
V

sρdV1

ð
area

sρv-UdA
- ð3:51Þ

Substituting Equation 3.50 into 3.51,

@

@t

ð
V

sρdV1

ð
area

sρv-UdA
-
$

_Q

T
ð3:52Þ

Equation 3.52 is a statement of the second law of thermodynamics, which can be directly
applied to fluid mechanics problems. In some instances, it may be useful to know that

_Q

T

!
V

5

ð
area

_Q

AT
dA ð3:53Þ

_Q
A is the heat flux along one particular area. This is normally constant for one particular
surface area of interest.

3.7 THE NAVIER-STOKES EQUATIONS

In the previous sections, we have applied various physical laws to a fluid volume of
interest. However, to obtain an equation that describes the fluid motion at any time or
location within the flow field, it is easier to apply Newton’s second law of motion to a par-
ticle. For a system such as this, Newton’s law becomes

dF
-
5 dm

dv
-

dt
ð3:54Þ

The derivation for the acceleration of a fluid particle has already been shown in
Chapter 2. Using that relationship for particle acceleration, Newton’s law becomes

dF
-
5 dm

@v
-

@t
1 u

@v
-

@x
1 v

@v
-

@y
1w

@v
-

@z

 !
ð3:55Þ

As discussed before, the forces on a fluid particle can be body forces or surface forces.
To define these forces, let us look at the forces that act on a differential element with mass
dm and volume dV5 dxdydz. As done previously to describe the pressure acting on a dif-
ferential element, assume that the stresses acting at the cubes center (denoted as p) are
ωxx, τyx, and τzx (Figure 3.19). Note that all of these stresses act in the x-direction on this
figure.
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Quantifying the stresses in the x-direction as a component of the total surface forces,

dFsx 5 σxx 1
@σxx

@x

dx

2

� �
dydz2 σxx 2

@σxx

@x

dx

2

� �
dydz1 τyx 1

@τyx
@y

dy

2

� �
dxdz

2 τyx 2
@τyx
@y

dy

2

� �
dxdz1 τzx 1

@τzx
@z

dz

2

� �
dxdy2 τzx 1

@τzx
@z

dz

2

� �
dxdy

5
@σxx

@x
1

@τyx
@y

1
@τzx
@z

� �
dxdydz

ð3:56Þ

Using a similar analysis for each of the remaining two directions and assuming that the
gravitational force is the only body force, the total force in each direction becomes

dFx 5 dFbx 1 dFsx 5 ρgx 1
@σxx

@x
1

@τyx
@y

1
@τzx
@z

� �
dxdydz

dFy 5 dFby 1 dFsy 5 ρgy 1
@τxy
@x

1
@σyy

@y
1

@τzy
@z

� �
dxdydz

dFz 5 dFbz 1 dFsz 5 ρgz 1
@τxz
@x

1
@τyz
@y

1
@σzz

@z

� �
dxdydz

ð3:57Þ

dz

dx

dy

p ∂σxx dx
 ∂x    2

X

Y

Z

σxx +∂σxx dx
 ∂x    2

σxx −

∂τzx  dz
 ∂z    2

τzx −

∂τyx  dy
 ∂y    2

τyx +

∂τzx  dz
 ∂z    2

τzx +

∂τyx dy

 ∂y   2
τyx −

FIGURE 3.19 The normal and shear stresses acting in the x-direction on a differential fluid element. The stres-
ses that act in the other Cartesian directions can be derived in a similar manner. Recall that only six of these stress
values are independent for momentum conservation.
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For this formulation, gravity does not need to align with a particular Cartesian direc-
tion. Substituting Equation 3.57 into Equation 3.55 and writing it in terms of vector compo-
nents gives us

ρgx 1
@σxx

@x
1

@τyx
@y

1
@τzx
@z

� �
dxdydz5 dm

@u

@t
1 u

@u

@x
1 v

@u

@y
1w

@u

@z

� �

ρgy 1
@τxy
@x

1
@σyy

@y
1

@τzy
@z

� �
dxdydz5 dm

@v

@t
1 u

@v

@x
1 v

@v

@y
1w

@v

@z

� �

ρgz 1
@τxz
@x

1
@τyz
@y

1
@σzz

@z

� �
dxdydz5 dm

@w

@t
1 u

@w

@x
1 v

@w

@y
1w

@w

@z

� �
Using the relationship that dm5 ρdV5 ρdxdydz, the equations of motion become

ρgx 1
@σxx

@x
1

@τyx
@y

1
@τzx
@z

� �
5 ρ

@u

@t
1 u

@u

@x
1 v

@u

@y
1w

@u

@z

� �
5 ρ

Du

Dt

ρgy 1
@τxy
@x

1
@σyy

@y
1

@τzy
@z

� �
5 ρ

@v

@t
1 u

@v

@x
1 v

@v

@y
1w

@v

@z

� �
5 ρ

Dv

Dt

ρgz 1
@τxz
@x

1
@τyz
@y

1
@σzz

@z

� �
5 ρ

@w

@t
1 u

@w

@x
1 v

@w

@y
1w

@w

@z

� �
5 ρ

Dw

Dt

ð3:58Þ

Equation 3.58 is the differential equations of motion, which are valid for any fluid that
is a continuum and for any fluid that has the force of gravity as the only body force. In
Chapter 2, we defined the normal stress as a function of hydrostatic pressure and the
shear stresses as a function of viscosity and shear rate (which is a function of velocity).
The following definitions apply:

σxx 52 p2
2

3
μrUv-1 2μ

@u

@x

σyy 52 p2
2

3
μrUv-1 2μ

@v

@x

σzz 52 p2
2

3
μrUv-1 2μ

@w

@x

τxy 5 τyx 5μ
@u

@y
1

@v

@x

� �

τxz 5 τzx 5μ
@u

@z
1

@w

@x

� �

τyz 5 τzy 5μ
@v

@z
1

@w

@y

� �

ð3:59Þ

where r is the gradient operator and is defined as

rf 5 @f

@x
i
-
1

@f

@y
j
-
1

@f

@z
k
-

where f is any function in the Cartesian coordinate system (note that the gradient function
can be calculated in any coordinate system for any function; we are just highlighting the
Cartesian coordinate system for this analysis).
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Substituting Equations 3.59 into Equations 3.58, the equations of motion become

ρ
Du

Dt
5 ρgx 1

@ 2 p2 2
3μrUv

-
1 2μ @u

@x

� �
@x

1
@ μ @u

@y 1
@v
@x

� �� �
@y

1
@ μ @u

@z 1
@w
@x

� �� �
@z

0
@

1
A

5 ρgx 2
@p

@x
1

@ μ 2 @u
@x 2

2
3μrUv

-
� �h i

@x
1

@ μ @u
@y 1

@v
@x

� �� �
@y

1
@ μ @u

@z 1
@w
@x

� �� �
@z

ρ
Dv

Dt
5 ρgy 1

@ μ @u
@y 1

@v
@x

� �� �
@x

1
@ 2 p2 2

3μrUv
-
1 2μ @v

@x

� �
@y

1
@ μ @v

@z 1
@w
@y

� �� �
@z

0
@

1
A

5 ρgy 2
@p

@y
1

@ μ 2 @v
@x 2

2
3μrUv

-
� �h i

@y
1

@ μ @u
@y 1

@v
@x

� �� �
@x

1
@ μ @v

@z 1
@w
@y

� �� �
@z

ð3:60Þ

ρ
Dw

Dt
5 ρgz 1

@ μ @u
@z 1

@w
@x

� �� �
@x

1
@ μ @v

@z 1
@w
@y

� �� �
@y

1
@ 2 p2 2

3μrUv
-
1 2μ @w

@x

� �
@z

0
@

1
A

5 ρgz 2
@p

@z
1

@ μ 2 @w
@x 2 2

3μrUv
-

� �h i
@z

1
@ μ @u

@z 1
@w
@x

� �� �
@x

1
@ μ @v

@z 1
@w
@y

� �� �
@y

Equations 3.60 are the full Navier-Stokes equations that are valid for any fluid. If we
assume that the fluid is incompressible and the viscosity is uniform and constant, the
equations simplify to

ρ
@u

@t
1 u

@u

@x
1 v

@u

@y
1w

@u

@z

� �
5 ρgx 2

@p

@x
1μ

@2u

@x2
1

@2u

@y2
1

@2u

@z2

� �

ρ
@v

@t
1 u

@v

@x
1 v

@v

@y
1w

@v

@z

� �
5 ρgy 2

@p

@y
1μ

@2v

@x2
1

@2v

@y2
1

@2v

@z2

� �

ρ
@w

@t
1 u

@w

@x
1 v

@w

@y
1w

@w

@z

� �
5 ρgz 2

@p

@z
1μ

@2w

@x2
1

@2w

@y2
1

@2w

@z2

� � ð3:61Þ

Equation 3.61 is the form of the Navier-Stokes equations that will be used often in this
textbook. In many biofluid mechanics examples, it is however more useful to solve the
Navier-Stokes equations in a cylindrical coordinate system. The Navier-Stokes equations in
cylindrical coordinates are as follows for incompressible fluids with a constant viscosity:

ρ
@vr
@t

1vr
@vr
@r

1
vθ
r

@vr
@θ

2
v2θ
r
1vz

@vr
@z

� �
5ρgr2

@p

@r
1μ

@

@r

1

r

@

@r
rvrð Þ

� �
1

1

r2
@2vr

@θ2
2

2

r2
@vθ
@θ

1
@2vr
@z2

� �

ρ
@vz
@t

1vr
@vz
@r

1
vθ
r

@vz
@θ

1vz
@vz
@z

� �
5ρgz2

@p

@z
1μ

1

r

@

@r
r
@vz
@r

� �
1

1

r2
@2vz

@θ2
1

@2vz
@z2

� �

ρ
@vθ
@t

1vr
@vθ
@r

1
vθ
r

@vθ
@θ

1
vrvθ
r

1vz
@vθ
@z

� �
5ρgθ2

@p

@θ
1μ

@

@r

1

r

@

@r
rvθð Þ

� �
1

1

r2
@2vθ

@θ2
2

2

r2
@vr
@θ

1
@2vθ
@z2

� �
ð3:62Þ
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The following two examples illustrate how to use either the Cartesian form or the cylin-
drical form of the Navier-Stokes equations. Remember that the usefulness of these equa-
tions is that the fully developed velocity profile of any flowing fluid can be determined.
If the flow is one-dimensional, then this can be easily solved by hand.

Example

Find an expression for the velocity profile and the shear stress (τxy) distribution for blood flow-

ing in an arteriole with a diameter of 500 μm. Use the Navier-Stokes equations for Cartesian coor-

dinates to solve this problem. The pressure driving this flow is given in Figure 3.20.

Solution

To solve this problem, assume that vy5 vz5 0 and vx is a function of y only. Assume that the

viscosity is constant and that the flow is incompressible and steady.

ρ
@u

@t
1 u

@u

@x
1 v

@u

@y
1w

@u

@z

� �
5 ρgx 2

@p

@x
1μ

@2u

@x2
1

@2u

@y2
1

@2u

@z2

� �

052
@p

@x
1μ

@2u

@y2
52

@p

@x
1μ

d2u

dy2

d2u

dy2
5

1

μ
@p

@x
-d2u5

1

μ
@p

@x
dy2

ð
d2u5

ð
1

μ
@p

@x
dy2

du5
y

μ
@p

@x
1 c1

� �
dy

ð
du5

ð
y

μ
@p

@x
1 c1

� �
dy

uðyÞ5 y2

2μ
@p

@x
1 c1y1 c2

y
h gy

x

5 cm
50 mmHg 40 mmHg

FIGURE 3.20 Pressure driven flow in an arteriole for example problem.
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To find the exact solution, we need boundary conditions for the particular flow scenario. Due

to the no-slip boundary condition, we know that the velocity at both walls is zero and that the

shear stress at the centerline is zero. Therefore, our boundary conditions are

uð0Þ5 0

uðhÞ5 0

duðh=2Þ
dy

5 0

Using two of these conditions to solve for the integration constants,

uð0Þ5 02

2 μ
@p

@x
1 c101 c2 5 0

c2 5 0

duðh=2Þ
dy

5
h=2

μ
@p

@x
1 c1

c1 52
h

2μ
@p

@x

Substituting the values for these integration constants into the velocity equation,

uðyÞ5 y2

2μ
@p

@x
2

h

2μ
@p

@x
y5

1

2μ
@p

@x
ðy2 2 hyÞ

For this particular flow scenario,

μ5 3:5 cP

@p

@x
5

40 mmHg2 50 mmHg

5 cm2 0 cm
522 mmHg=cm

h5 500 μm

uðyÞ5 1

2 � 3:5 cP
ð22 mmHg=cmÞðy2 2500 μmyÞ5 23:81

μms
ðy2 2500 μmyÞ

The shear stress profile for this particular flow is equal to

τxy 5μ
@u

@y
1

@v

@x

� �
5μ

@u

@y

τxy 5μ
y

μ
@p

@x
2

h

2μ
@p

@x

� �
5

@p

@x
y2

h

2

� �

Substituting the appropriate known values for this particular scenario,

τxy 5μ
y

μ
@p

@x
2

h

2μ
@p

@x

� �
5

@p

@x
y2

h

2

� �

520:267
dyne

cm2μm
ðy2250 μmÞ
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Example

Find an expression for the velocity profile and the shear stress distribution for blood flowing

in an arteriole with a diameter of 500 μm. Use the Navier-Stokes equations for cylindrical coordi-

nates to solve this problem. The pressure driving this flow is given in Figure 3.21.

Solution

To solve this problem, assume that vr5 vθ5 0 and vz is a function of r only. Assume that the

viscosity is constant and that the flow is incompressible and steady.

ρ
@vz
@t

1 vr
@vz
@r

1
vθ
r

@vz
@θ

1 vz
@vz
@z

� �
5 ρgz 2

@p

@z
1μ

1

r

@

@r
r
@vz
@r

� �
1

1

r2
@2vz

@θ2
1

@2vz
@z2

� �

052
@p

@z
1

μ
r

@

@r
r
@vz
@r

� �

r

μ
@p

@z
5

d

dr
r
dvz
dr

� �
ð
r

μ
@p

@z
dr5

ð
d r

dvz
dr

� �

r2

2μ
@p

@z
1 c1 5 r

dvz
dr

-
r

2μ
@p

@z
1

c1
r
5

dvz
drð

r

2μ
@p

@z
1

c1
r

� �
dr5

ð
dvz

vzðrÞ5
r2

4μ
@p

@z
1 c1lnðrÞ1 c2

To find the exact solution, we need boundary conditions for the particular flow scenario. Due

to the no-slip boundary condition, we know that the velocity at the wall is zero and that the

shear stress at the centerline is zero. Therefore, our boundary conditions are

vzðRÞ5 0

dvzð0Þ
dr

5 0

Note that we do not have a boundary condition of vz(2R)5 0, because in cylindrical coordi-

nates there is no negative radial direction. This location would be associated with 180� in the

z

r

R
gr

5 cm
50 mmHg 40 mmHg

FIGURE 3.21 Pressure-driven flow in an arteriole with cylindrical coordi-
nates for the in text example. This is the same image as Figure 3.20, but choos-
ing a different coordinate system to illustrate the usage of Cartesian
coordinates versus cylindrical coordinates.
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theta direction and 1R in the radial direction. Using these conditions to solve for the integration

constants,

dvzð0Þ
dr

5
0

2μ
@p

@z
1

c1
0
5 0

Due to the discontinuity at r5 0, the only way for this equation to be valid is that c15 0.

Therefore, the discontinuity is removed. Using the second boundary condition,

vzðRÞ5
R2

4μ
@p

@z
1 c2 5 0

c2 52
R2

4μ
@p

@z

Substituting the values for the integration constants into the velocity equation,

vzðrÞ5
r2

4μ
@p

@z
2
R2

4μ
@p

@z
5

R2

4μ
@p

@z

r

R

� �2
2 1

� �

For this particular flow scenario, using the same values as the previous example,

vzðrÞ5
R2

4μ
@p

@z

r

R

� �2
2 1

� �
5211:9 cm=s

r2

62; 500 μm2
2 1

� �

The shear stress distribution is

τzr 5μ
@vr
@z

1
@vz
@r

� �
5μ

@vz
@r

τzr 5μ
r

2μ
@p

@z

� �
5

r

2

@p

@z
520:1332 dyne=cm2μm � r

3.8 BERNOULLI EQUATION

The Bernoulli equation is a useful formula that relates the hydrostatic pressure, the fluid
height, and the speed of a fluid element. However, there are a few important assumptions
that are made to derive this formula, which makes this powerful equation not necessarily
useful in many biofluid mechanics applications. Although as a back-of-the-envelope calcu-
lation, the Bernoulli equation can approximate the real flow situation reasonably well. To
derive this equation, the conservation of mass and conservation of momentum equations
are simplified by making the assumptions that the flow is steady, incompressible, and
invisicid (has no viscosity).

To derive the Bernoulli equation, let us follow a differential volume of fluid in an
expanding streamline (Figure 3.22). The fluid properties at the inlet will be denoted as pi,
vi, Ai, and ρ. The fluid properties at the outlet will be denoted as pi1 dpi, vi1 dvi, Ai1 dAi,
and ρ. This same analysis can be conducted for a reducing streamline, where the solution
would include negative differential changes, as necessary.
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Applying the conservation of mass to this condition, we find that

05
@

@t

ð
V

ρdV1

ð
area

ρv-UdA
-

05

ð
area

ρv-UdA
-
52 ρviAi 1 ρðvi 1 dviÞðAi 1 dAiÞ

because we assumed that the flow is steady and incompressible. Simplifying the previous
equation, we can obtain

ρviAi 5 ρðviAi 1 vidAi 1Aidvi 1 dvidAiÞ5 ρviAi 1 ρvidAi 1 ρAidvi 1 ρdvidAi ð3:63Þ
Remember that the product of two differentials (dvidAi) is going to be negligible compared
to the remaining terms, which allows us to simplify Equation 3.63 to

05 vidAi 1Aidvi ð3:64Þ
Now we will simplify the conservation of momentum equation in the streamline direc-

tion (s). The conservation of momentum states that

Fbs 1 Fss 5
@

@t

ð
V

vsρdV1

ð
area

vsρv
-
UdA

-

for the streamline direction. Because we are assuming steady flow, this formula
simplifies to

Fbs 1 Fss 5

ð
area

vsρv
-
UdA

- ð3:65Þ

Because the fluid is invisicid, the only forces that arise are from the pressure acting
on the two surfaces and the surrounding fluid and the body force due to gravity.

Z

X

θ

Inlet

ds

Outlet

g

Y

FIGURE 3.22 A differential volume of fluid fol-
lowing expanding streamlines (streamlines are the
curved arrows in the figure). The expansion causes
an increase in area at the outlet as compared to the
inlet.
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These forces are

Fss 5 piAi 2 ðpi 1 dpiÞðAi 1 dAiÞ1 pi 1
dpi
2

� �
dAi 52Aidpi

Fbs 5 gsρdV5 ð2gsinθÞρ A1
dAi

2

� �
ds52ρg Ai 1

dAi

2

� �
dz

ð3:66Þ

because sinθds5 dz. The differential volume term (dV in the Fbs equation) is an approxima-
tion of the volume using the midpoint area. The same analysis was used to approximate
the pressure on the surrounding fluid; that is, use the midpoint pressure as the approxi-
mate pressure on the fluid. The flux term in Equation 3.65 is equal toð

area

vsρv
-
UdA

-
5 við2 ρviAiÞ1 ðvi 1 dviÞðρðvi 1 dviÞðAi 1 dAiÞÞ

making use of the inflow/outflow conditions. From the continuity equation (prior to sim-
plifying the term),

við2ρviAiÞ1 ðvi 1 dviÞðρðvi 1 dviÞðAi 1 dAiÞÞ5 við2ρviAiÞ1 ðvi 1 dviÞðρviAiÞ5 ρviAidvi ð3:67Þ
Substituting Equations 3.66/3.67 into the momentum equation (Equation 3.65),

2Aidp2 ρg Ai 1
dAi

2

� �
dz52Aidpi 2 ρgAidz5 ρviAidvi

If we divide this equation by ρAi, and simplify the velocity derivative,

05 vidvi 1
dpi
ρ

1 gdz5 d
v2i
2

� �
1

dpi
ρ

1 gdz

Integrating this equation and dropping the subscripts, we obtain the Bernoulli equation:

v2

2
1

p

ρ
1 gz5 constant ð3:68Þ

As we stated before, the Bernoulli equation is a powerful equation which relates the
flow speed, the hydrostatic pressure, and the height to a constant. It can only be applied
to a situation where the flow is steady, invisicid, and incompressible. In developing this
relationship, we used a differential element, where these three criteria were valid. In most
cases, it will not be easy to justify the use of the Bernoulli equation instead of the Navier-
Stokes equations, the Conservation of Mass, and the Conservation of Momentum.
However, as our example will show, we can use the Bernoulli equation as an approxima-
tion for various flow situations. In this simplified form, the Bernoulli equation is a state-
ment of the conservation of energy for an invisicid fluid.

Example

Blood flow from the left ventricle into the aorta can be modeled as a reducing nozzle (see

Figure 3.23). Model both the left ventricle and the aorta as a tube with diameter of 3.1 cm and
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2.7 cm, respectively. The pressure in the left ventricle is 130 mmHg and the pressure in the aorta

is 123 mmHg. Blood is ejected from the left ventricle at a speed of 120 cm/s. Calculate the differ-

ence in height between these two locations.

Solution

To solve this problem, we need to assume that the flow is steady, incompressible, and invisi-

cid. Apply the Conservation of Mass to determine the blood velocity within the aorta.

05

ð
area

ρv-UdA
-
52 ρv1A1 1 ρv2A2

v2 5
v1A1

A2
5

120 cm=s � π 3:1 cm
2

� �2
π 2:7 cm

2

� �2 5 158 cm=s

Using Bernoulli to solve for the difference in height,

v21
2

1
p1
ρ

1 gz1 5
v22
2

1
p2
ρ

1 gz2

gðz2 2 z1Þ5
v21
2

1
p1
ρ

2
v22
2

2
p2
ρ

z2 2 z1 5

v21
2 1

p1
ρ 2

v2
2

2 2
p2
ρ

g

5

ð120 cm=sÞ2
2 1

130 mmHg
1050 kg=m3 2

ð158 cm=sÞ2
2 2

123 mmHg
1050 kg=m3

9:81 m=s2
5 3:68 cm

As you can imagine from the previous example, using the Bernoulli equation and the
Conservation of Mass equations, we can estimate velocity, pressure, or height of a particu-
lar fluid. We want to emphasize that this is only an estimate in most real cases, because
we need to make the assumption that the flow is invisicid to apply Bernoulli. Use caution
when applying this powerful relationship. In most situations, if the blood vessel is large

v1

v2

Aorta
location 2

Left ventricle
location 1

Δz = ?

FIGURE 3.23 Schematic of the aorta downstream to the left ventri-
cle. The aorta would experience a slight contraction within this area.
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enough (e.g., aorta or vena cava), the Bernoulli equations can be applied, but as the vessel
diameter reduces, the viscous forces play a more critical role in the flow. Therefore, the
Bernoulli equations cannot be used in these situations and the Navier-Stokes equations,
the Conservation of Momentum, and the Conservation of Mass should be applied.

END OF CHAPTER SUMMARY

3.1 The body forces acting on a differential fluid element are Fb
-

5 g
-
dm5 g

-ρdxdydz. The surface

forces acting on a differential fluid element are dFs
-

52r p
-
dxdydz. For static fluids, where all

acceleration terms are zero, the pressure gradient is equal to the gravitational acceleration

multiplied by the fluid density. In Cartesian components, this is

2
@p

@x
1 ρgx 5 0

2
@p

@y
1 ρgy 5 0

2
@p

@z
1 ρgz 5 0

Most pressures that are recorded in biofluids are gauge pressures, which can be defined as

pgauge 5 pabsolute 2 patmospheric

3.2 Buoyancy is the net vertical force that acts on a floating or an immersed object. The buoyancy

forces can be defined as

Fz 5

ð
V

dFz 5

ð
V

ρgdV5 ρgV

3.3 A generalized formulation for the time rate of change of a system property can be repre-

sented as

dW

dt
5

@

@t

ð
V

wρdV1

ð
area

wρv-UdA
-

Applying this formulation to the Conservation of Mass, we would get

dm

dt

����
system

5
@

@t

ð
V

ρdV1

ð
area

ρv-UdA
-
5 0

Depending on the particular flow conditions, the conservation of mass formula can be sim-

plified in various ways.

3.4 The Conservation of Momentum can be represented as

dP

dt
5 F

-
5 F

-

b 1 F
-

s 5
@

@t

ð
V

v
-ρdV1

ð
area

v
-ρv-UdA

-

Again, this can be simplified depending on the particular flow conditions.
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3.5 The Conservation of Momentum could also include acceleration components. In Cartesian

component form this would be

F
-

bx 1 F
-

sx 2

ð
V

a
-

rxρdV5
@

@t

ð
V

uxyzρdV1

ð
area

uxyzρv
-

xyzUdA
-

F
-

by 1 F
-

sy 2

ð
V

a
-

ryρdV5
@

@t

ð
V

vxyzρdV1

ð
area

vxyzρv
-

xyzUdA
-

F
-

bz 1 F
-

sz 2

ð
V

a
-

rzρdV5
@

@t

ð
V

wxyzρdV1

ð
area

wxyzρv
-

xyzUdA
-

3.6 It is common for heat exchange to occur within biological flows. To account for the conserva-

tion of energy within a fluid, the formulation would become

_Q2 _W 5
@

@t

ð
V

eρdV1

ð
area

eρv-U dA
-��� ���5 @

@t

ð
V

u1
v2

2
1 gz

� �
ρdV1

ð
area

u1
v2

2
1 gz

� �
ρv-UdA

-

The rate of work in this equation would need to account for all of the various work terms

that may be applied to the fluid. In a simplified form, this would be

_Q1

ð
area

τ- Uv
-
dA2 _Wshaft 2 _Wother 5

@

@t

ð
V

u1
v2

2
1 gz

� �
ρdV1

ð
area

u1
v2

2
1 gz1 p

� �
ρv-UdA

-

The second law of thermodynamics can be applied to biofluids. It is represented as

@

@t

ð
V

sρdV1

ð
area

sρv-UdA
-
$

_Q

T

3.7 The Navier-Stokes equations are the solutions of Newton’s Second Law of Motion applied to

fluid flow. For incompressible flows with a constant viscosity, these equations simplify to
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in cylindrical coordinates. From either of these sets of equations, the fully developed fluid

velocity profile can be directly solved for as a function of location within the flow field.

3.8 The Bernoulli equation is a useful formula that relates the pressure variation in a fluid to the

height and the speed of the fluid element. However, this formulation is only valid for steady,

incompressible, and invisicid flows. The Bernoulli equation states that

v2

2
1

p

ρ
1 gz5 constant

HOMEWORK PROBLEMS

3.1 A two-fluid manometer is used to measure the pressure difference for flowing blood in a

laboratory experiment (see Figure 3.24). Calculate the pressure difference between points

A and B in the fluid.

3.2 NASA is planning a mission to a newly found planet and will monitor the density of the

new planet’s atmosphere. Assume that NASA knows that atmosphere behaves as an ideal

gas and that the planet’s gravitational force is a function of altitude gðzÞ5 18:7m
s2

�
12 z

10;000 m

� �
Þ, where z is in m). The temperature of the atmosphere is constant at 250 K,

and the gas constant is 340 Nm/kgK. Assume that the pressure at the planet’s surface is

2 atm. Calculate the pressure and density at an altitude of 1 km, 5 km, and 9 km.

3.3 Calculate the hydrostatic pressure in the cranium and in the feet at the end of systole and

the end of diastole for a hypertensive patient (end systolic pressure is equal to 185 mmHg

and end diastolic pressure is equal to 145 mmHg). Assume that the blood density does not

change significantly with height and that the cranium is 25 cm above the aortic valve and

the feet are 140 cm below the aortic valve. Compare this with a normal patient.

3.4 A balloon catheter has been placed within a femoral artery of a patient, to be passed to the

coronary artery (use the same dimensions stated with Figure 3.6). Assume that the catheter

consists of two components: 1) a chamber to hold the balloon, which is 2 mm in diameter

and 1 cm in length (a perfect cylinder) and 2) a tube 0.5 mm in diameter and the total

Water

d3 = 275 mm

Blood
A B

d2 = 190 mm

d1 = 500 mm

FIGURE 3.24 Figure for homework problem
3.1.
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length needed to transport the balloon to the opening locations. Calculate the buoyancy

force on this catheter.

3.5 Consider the steady, incompressible blood flow through the vascular network as shown.

Determine the magnitude and the direction of the volume flow rate through the daughter

branch 2 (denoted as D3 in Figure 3.25).

3.6 A biofluid flows with a density of 1080 kg/m3 through the converging network as shown

in Figure 3.26. Given that d15 15 μm, d25 9 μm, and d35 24 μm, with v15 5 mm/s i
-

and

v25 8 mm/s j
-
, determine the velocity v3.

3.7 Using the same details for problem 3.6, calculate the change in time rate of change of vol-

ume if v3 is equal to 10 mm/s.

3.8 Air enters the lungs through a circular channel with a diameter of 3 cm and a velocity of

150 cm/s and a density of 1.25 kg/m3. Air leaves the lungs through the same opening at a

velocity of 120 cm/s and a density equal to that of the lungs. At the initial conditions the

air within the lungs has a density of 1.4 kg/m3, with a total volume of 6 L. Find the initial

rate of change of the density of air in the lung assuming that your time step includes one

inhale and one exhale (takes 15 sec).

3.9 During peak systole, the heart delivers to the aorta a blood flow that has a velocity of

100 cm/sec at a pressure of 120 mmHg. The aortic root has a mean diameter of 25 mm.

Determine the force acting on the aortic arch if the conditions at the outlet are a pressure of

110 mmHg and a diameter of 21 mm (see Figure 3.27). The density of blood is 1050 kg/m3.

d1 = 100 μm
v1 = 100 mm/s

d2 = 75 μm
v2 = 80 mm/s

d3 = 35 μm

FIGURE 3.25 Figure for homework problem 3.5.

d1 , v1

d2 , v2

d3, v3

FIGURE 3.26 Figure for homework problem 3.6.
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3.10 A reducing blood vessel has a 30� bend in it. Evaluate the components of force that must

be provided by the adjacent tissue to keep the blood vessel in place. All necessary informa-

tion is provided in Figure 3.28.

3.11 The following segment of the carotid artery (see Figure 3.29) has an inlet velocity of 50 cm/s

(diameter of 15 mm). The outlet has a diameter of 11 mm. The pressure at the inlet is

110 mmHg and at the outlet is 95 mmHg. Determine the reaction forces to keep this vessel

in place.

3.12 One of the first implantable mechanical heart valves was designed as a ball within a cage

that acted as a check valve. Using the conservation of momentum (with acceleration), model

the acceleration of the ball after it is hit by a jet of blood, being ejected from the heart

(Figure 3.15). The ball has a turning angle of 45� and a mass of 20 g. Blood is ejected from

the heart at a velocity of 110 cm/s, through an opening with a diameter of 25 mm.

Determine the velocity of the ball at 0.5 sec. Neglect any resistance to motion (except mass).

3.13 During systole, blood is ejected from the left ventricle at a velocity of 125 cm/s. The diame-

ter of the aortic valve is 24 mm, and there is no heat transfer or temperature change within

the system. Assume that systole lasts for 0.25 sec, that the height difference is 5 cm, and

Mass of blood vessel = 5 g
Internal volume = 15 mm3

P1 = 65 mmHg
d1 = 1.25 mm

P2 = 40 mmHg
d2 = 0.75 mm

Q1 = 1.5 cm3/s

30°

FIGURE 3.28 Figure for homework problem
3.10.

Ry

v1

d1 = 25 mm d2 = 21 mm

v2

FIGURE 3.27 Figure for homework problem 3.9.

d1

v1

Ry

Rx

v2d2Y

X

60°

FIGURE 3.29 Figure for homework problem 3.11.
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that there is no change in area within this distance. Determine the amount of work per-

formed by the heart during systole and the power that the heart generates.

3.14 Air at standard atmosphere conditions (1 atm and 25�C) enters the lungs at 50 cm/s and

leaves at a pressure of 1.1 atm, 37�C, and a velocity of 60 cm/s (with a constant mass flow

rate of 1.2 g/s). The body removes heat from the lungs at a rate of 15 J/g. Calculate the

power required by the lungs.

3.15 The left common coronary artery has an axisymmetric constriction because of a plaque

buildup (see Figure 3.30). Given the upstream conditions of a velocity of 20 cm/s (systole)

and 12 cm/s (diastole), calculate the velocity at the stenosis throat and the pressure differ-

ence between the stenosis throat and the inlet.

3.16 Blood flows through a 25% restricting (diameter reduces by 25%) blood vessel that experi-

ences a 5 cm vertical drop (see Figure 3.31). The blood pressure at the inlet is 65 mmHg,

and the blood velocity is 50 cm/s. Calculate the blood velocity the pressure at the outlet.

3.17 The cross-sectional area of a diverging vein may be expressed as A5A1eax, where A1 is the

cross-sectional area of that inlet. Develop a relationship for the velocity profile within the

vein (in terms of x, v1). Also, develop a relationship for the pressure (if the inlet pressure is

p1) in terms of x. Assume that there is no variation in height.

3.18 Blood flows through a vertical tube with a kinematic viscosity of 33 10-4 m/s2 by gravity

only (see Figure 3.32). Solve the appropriate Navier-Stokes equations to find the velocity

distribution vZ(r) and compute the average velocity.

3.19 Solve problem 3.18 assuming that the blood is flowing within a vertical parallel plate (i.e.,

calculate with the Cartesian Navier-Stokes equations), where the coordinate system is

aligned with the wall and channel width is h (see Figure 3.33).

5 cm

FIGURE 3.31 Figure for homework problem 3.16.

d = 6 mm

d = 15 mm

FIGURE 3.30 Figure for homework problem 3.15.

r
gz

FIGURE 3.32 Figure for homework problem 3.18.
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