
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 2: Strings, Languages, DFAs
17 January 2008

This lecture covers material on strings and languages from Sipser chapter 0. Also chapter
1 up to (but not including) the formal definition of computation (i.e. pages 31–40).

1 Alphabets, strings, and languages

1.1 Alphabets

An alphabet is any finite set of characters.
Here are some examples for such alphabets:

(i) {0, 1}.
(ii) {a, b, c}.
(iii) {0, 1,#}.
(iv) {a, ...z, A, ...Z}: all the letters in the English language.

(v) ASCII - this is the standard encoding schemes used by computers mappings bytes (i.e.,
integers in the range 0..255) to characters. As such, a is 65, and the space character ␣
is 32.

(vi) {moveforward, moveback, rotate90, reset}.

1.2 Strings

This section should be recapping stuff already seen in discussion section 1.
A string over an alphabet Σ is a finite sequence of characters from Σ.
Some sample strings with alphabet (say) Σ = {a, b, c} are abc, baba, and aaaabbbbccc.
The length of a string x is the number of characters in x, and it is denoted by |x|. Thus,

the length of the string w = abcdef is |w| = 6.
The empty string is denoted by ε, and it (of course) has length 0. The empty string is

the string containing zero characters in it.
The concatenation of two strings x and w is denoted by xw, and it is the string formed

by the string x followed by the string w. As a concrete example, consider x = cat, w = nip

and the concatenated strings xw = catnip and wx = nipcat.
Naturally, concatenating with the empty string results in no change in the string. For-

mally, for any string x, we have that xε = x. As such εε = ε.

1

For a string w, the string x is a substring of w if the string x appears contiguously in
w.

As such, for w =abcdef

we have that bcd is a substring of w,
but ace is not a substring of w.

A string x is a suffix of w if its a substring of w appearing in the end of w. Similarly, y
is a prefix of w if y is a substring of w appearing in the beginning of w.

As such, for w =abcdef

we have that abc is a prefix of w,
and def is a suffix of w.

Here is a formal definition of prefix and substring.

Definition 1.1 The string x is a prefix of a string w, if there exists a string z, such that
w = xz.

Similarly, x is a substring of w if there exist strings y and z such that w = yxz.

1.3 Languages

A language is a set of strings. One special language is Σ∗, which is the set of all possible
strings generated over the alphabet Σ∗. For example, if

Σ = {a, b, c} then Σ∗ = {ε, a, b, c, aa, ab, ac, ba, . . . , aaaaaabbbaababa, . . .} .
Namely, Σ∗ is the “full” language made of characters of Σ. Naturally, any language over

Σ is going to be a subset of Σ∗.

Example 1.2 The following is a language

L = {b, ba, baa, baaa, baaaa, ...} .
Now, is the following a language?

{aa, ab, ba, ε} .
Sure – it is not a very “interesting” language because its finite, but its definitely a language.

How about {aa, ab, ba, ∅}. Is this a language? No! Because ∅ is no a valid string (which
comes to demonstrate that the empty word ε and ∅ are not the same creature, and they
should be treated differently.

Lexicographic ordering of a set of strings is an ordering of strings that have shorter
strings first, and sort the strings alphabetically within each length. Naturally, we assume
that we have an order on the given alphabet.

Thus, for Σ = {a, b}, the Lexicographic ordering of Σ∗ is

ε, a, b, aa, ab, ba, bb, aaa, aab,

2

1.3.1 Languages and set notation

Most of the time it would be more useful to use set notations to define a language; that is,
define a language by the property the strings in this language posses.

For example, consider the following set of strings

L1 =
{
x
∣∣∣x ∈ {a, b}∗ and |x| is even

}
.

In words, L1 is the language of all strings made out of a, b that have even length.
Next, consider the following set

L2 =
{
x
∣∣∣ there is a w such that xw = illinois

}
.

So L2 is the language made out of all prefixes of L2. We can write L2 explicitly, but its
tedious. Indeed,

L2 = {ε, i, il, ill, illi, illin, illino, illinoi, illinois} .

1.3.2 Why should we care about languages?

Consider the language Lprimes that contains all strings over Σ = {0, 1, . . . , 9} which are prime
numbers. If we can build a fast computer program (or an automata) that can tell us whether
a string s (i.e., a number) is in Lprimes, then we decide if a number is prime or not. And this
is a very useful program to have, since most encryption schemes currently used by computers
(i.e., RSA) rely on the ability to find very large prime numbers.

Let us state it explicitly: The ability to decide if a word is
in a specific language (like Lprimes) is equivalent to performing
a computational task (which might be extremely non-trivial).
You can think about this schematically, as a program that gets
as input a number (i.e., string made out of digits), and decides
if it is prime or not. If the input is a prime number, it outputs
Yes and otherwise it outputs No. See figure on the right.

Program decide-
ing if ihe input is
a prime number.

Input

Yes

No

1.4 Strings and programs

An text file (i.e., source code of a program) is a long one dimensional string with special 〈NL〉
(i.e., newline) characters that instruct the computer how to display the file on the screen.
That is, the special 〈NL〉 characters instruct the computer to start a new line. Thus, the text
file

if x=y then
jump up and down and scream.

Is in fact encoded on the computer as the string
if␣x=y␣then〈NL〉␣␣jump␣up␣and␣down␣and␣scream.

Here, ␣ denote the special space character and 〈NL〉 is the new-line character.

3

It would be sometime useful to use similar “complicated” encoding schemes, with sub-
parts separated by # or $ rather than by 〈NL〉.

Program input and output can be consider to be files. So a standard program can be
taught of as a function that maps strings to strings.1 That is P : Σ∗ → Σ∗. Most machines
in this class map input strings to two outputs: “yes” and “no”. A few automatas and most
real-world machines produce more complex output.

2 State machines

2.1 A simple automata

Here is a simple state machine (i.e., finite automaton) M that accepts all strings starting
with a.

q0 q1

qrej

6=
a

∗

∗a

Here ∗ represents any possible character.
Notice key pieces of this machine: three states, q0 is the start state (arrow coming in),

q1 is the final state (double circle), transition arcs.
To run the machine, we start at the start state. On each input character, we follow the

corresponding arc. When we run out of input characters, we answer “yes” or “no”, depending
on whether we are in the final state.

The language of a machine M is the set of strings it accepts, written L(M). In this case
L(M) = {a, aa, ab, aaa, . . .}.

2.2 Another automata

(This section is optional and can be skipped in the lecture.)
Here is a simple state machine (i.e., finite automaton)M that accepts all ASCII strings

ending with ing.

q0 q1 q2 q3

?

i n g

Notice key pieces of this machine: four states, q0 is the start state (arrow coming in), q3
is the final state (double circle), transition arcs.

To run the machine, we start at the start state. On each input character, we follow the
corresponding arc. When we run out of input characters, we answer “yes” or “no”, depending
on whether we are in the final state.

1Here, we are considering simple programs that just read some input, and print out output, without fancy
windows and stuff like that.

4

The language of a machine M is the set of strings it accepts, written L(M). In this case
L(M) = {walking, flying, ing, . . .}.

2.3 What automatas are good for?

People use the technology of automatas in real-world applications:

– Find all files containing -ing (grep)

– Translate each -ing into -iG (finite-state transducer)

– How often do words in Chomsky’s latest book end in -ing?

2.4 DFA - deterministic finite automata

We will start by studying deterministic finite automata (DFA). Each node in a determin-
istic machine has exactly one outgoing transition for each character in the alphabet. That
is, if the alphabet is {a, b}, then all nodes need to look like

q0

q1

q2

a

b

Both of the following are bad, where q1 6= q2 and the right hand machine has no outgoing
transition for the input character b.

q0

q1

q2

a

a
q0

q1
a

So our -ing detector would be redrawn as:

q0 q1 q2 q3

not i

i

i
n

not i or n

g

not i or g

i

g

i

not i

5

3 More examples of DFAs

3.1 Number of characters is even

Input: Σ = {0}.
Accept: all strings in which the number of characters is even.

q0 q1
0

0

3.2 Number of characters is divisible by 3

Input: Σ = {0}.
Accept: all strings in which the number of characters is divisible by 3.

q0 q1 q2
0 0

0

3.3 Number of characters is divisible by 6

Input: Σ = {0}.
Accept: all strings in which the number of characters is divisible by 6.

q0 q1 q2 q3 q4 q5
0 0 0 0 0

0

This example is especially interesting, because we can achieve the same purpose, by
observing that n mod 6 = 0 if and only if n mod 2 = 0 and n mod 3 = 0 (i.e., to be
divisible by 6, a number has to be divisible by 2 and divisible by 3 [a generalization of this
idea is known as the Chinese remainder theorem]). So, we could run the two automatas
of Section 3.1 and Section 3.2 in parallel (replicating each input character to each one of
the two automatas), and accept only if both automatas are in an accept state. This idea
would become more useful later in the course, as it provide a building operation to construct
complicated automatas from simple automatas.

3.4 Number of ones is even

Input is a string over Σ = {0, 1}.
Accept: all strings in which the number of ones is even.

q0 q1

0 0

1

1

6

3.5 Number of zero and ones is always within two of each other

Input is a string over Σ = {0, 1}.
Accept: all strings in which the difference between the number of ones and zeros in any

prefix of the string is in the range −2, . . . , 2. For example, the language contains ε, 0, 001,
and 1101. You even have an extended sequence of one character e.g. 001111, but it depends
what preceded it. So 111100 isn’t in the language.

q−2 q−1 q0 q1 q2

qrej

1 1 1 1

1

0
0 0

0

0 0, 1

Notice that the names of the states reflect their role in the computation. When you come
to analyze these machines formally, good names for states often makes your life much easier.
BTW, the language of this DFA is

L(M) =
{
w
∣∣∣w ∈ {0, 1}∗ and for every x that is a prefix of w, |#1(x)−#0(x)| ≤ 2

}
.

3.6 More complex language

The input is strings over Σ = {0, 1}.
Accept: all strings of the form 00w, where w contains an even number of ones.

A B C D

qrej

0 0

0 0 1

1

1 1

0, 1

You can name states anything you want. Names of the form qX are often convenient,
because they remind you of what’s a state. And people often make the initial state q0. But
this isn’t obligatory.

4 The pieces of a DFA

To specify a DFA (deterministic finite automata), we need to describe

– a (finite) alphabet

7

– a (finite) set of states

– which state is the start state?

– which states are the final states?

– what is the transition from each state, on each input character?

8

	Alphabets, strings, and languages
	Alphabets
	Strings
	Languages
	Languages and set notation
	Why should we care about languages?

	Strings and programs

	State machines
	A simple automata
	Another automata
	What automatas are good for?
	DFA - deterministic finite automata

	More examples of DFAs
	Number of characters is even
	Number of characters is divisible by 3
	Number of characters is divisible by 6
	Number of ones is even
	Number of zero and ones is always within two of each other
	More complex language

	The pieces of a DFA

