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•  Image enhancement : subjective process 
•  Image restoration : objective process 
 
•  Restoration: recover an image that has been degraded by using a priori 
knowledge of the degradation phenomenon 
 
•  Process: modelling the degradation and applying the inverse process to 
recover the original image 
e.g.: “de-blurring” 
 
Some techniques are best formulated in the spatial domain (e.g. additive 
noise only), others in the frequency domain (e.g. de-blurring) 

Introduction 
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Image Restoration and Reconstruction 
1.  A Model of the Image Degradation/Restoration Process 

2.  Noise Models 

3.  Restoration in the Presence of Noise Only - Spatial Filtering 

4.  Periodic Noise Reduction by Frequency Domain Filtering 

5.  Estimating the Degradation Function 

6.  Inverse Filtering 

7.  Minimum Mean Square Error (Wiener) Filtering 

8.  Geometric Mean Filter 
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Frequency domain representation: 

Spatial domain representation of the degraded image: 

1.  A Model of the Image Degradation/Restoration Process 

If H is a linear, position-invariant process 
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2.  Noise Models 

Principal source of noise during image acquisition and/or transmission 
Example of factors affecting the performance of imaging sensors: 
•   

2.1 Spatial and Frequency Properties of Noise 

Noise will be assumed to be: 
•  independent of spatial coordinates (except the spatially periodic noise of 2.3) 
•  uncorrelated w.r.t. the image (i.e. no correlation between pixel values and the 
values of noise components) 

•  Environment conditions during acquisition (e.g: light levels and sensor temperature) 
•  Quality of the sensing elements  
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2.  Noise Models 

2.2  Some Important Noise Probability Density Functions 

Gaussian (Normal) Noise 

PDF of a Gaussian random variable z: 

Rayleigh Noise 

Mean: Variance: 

Spatial noise descriptor: statistical behaviour of the intensity values in the noise component 
=> Random variables characterized by a Probability Density Function (PDF) 
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2.  Noise Models 

2.2  Some Important Noise Probability Density Functions 

Erlang (Gamma) Noise 

b positive integer 

Mean: Variance: 

Exponential Noise 

(cf. Erlang noise with b = 1) 
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2.2  Some Important Noise Probability Density Functions 

Uniform Noise 

Mean: Variance: 

Bipolar impulse noise (salt-and-pepper)  

unipolar noise  



Digital Image Processing 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

T. Peynot 

Chapter 6  
Image Restoration and Reconstruction 

2.2  Some Important Noise Probability Density Functions 
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2.3  Periodic Noise 

Typically comes from electrical and 
electromechanical interference during image 
acquisition 
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2.3  Periodic Noise 

Typically comes from electrical and 
electromechanical interference during image 
acquisition 
 

Can be reduced significantly using frequency 
domain filtering 
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2.4  Estimation of Noise Parameters 

S: sub-image 
ps(zi): probability estimates of the intensities of pixels in S 
L: number of possible intensities in the entire image 
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3.  Restoration in the Presence of Noise Only - Spatial Filtering 

3.1  Mean Filters 

Arithmetic mean filter 

Geometric mean filter 

When the only degradation is noise, the corrupted image is: 

When only additive noise present: spatial filtering 
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3.1  Mean Filters 

Harmonic mean filter 

Contraharmonic mean filter 

Works well for salt noise or Gaussian noise, but fails for pepper noise 

Q = order of the filter 
Good for salt-and-pepper noise. 
Eliminates pepper noise for Q > 0 and salt noise for Q < 0 
NB: cf. arithmetic filter if Q = 0, harmonic mean filter if Q = -1 
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Gaussian noise 

3x3 geometric mean filter 

3x3 arithmetic mean filter 
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Pepper noise, proba = 0.1 Salt noise 

3x3 contraharmonic filter 
Q = 1.5 

3x3 contraharmonic filter 
Q = -1.5 
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Filtering pepper noise 
with a 

3x3 contraharmonic filter 
Q = 1.5 

Filtering salt noise 
with a 

3x3 contraharmonic filter 
Q = -1.5 
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3.2  Order-Statistic Filters 

Median filter 

Particularly effective with bipolar 
and unipolar impulse noises 

3x3 median filter 

2d pass 



Digital Image Processing 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

T. Peynot 

Chapter 6  
Image Restoration and Reconstruction 

3.2  Order-Statistic Filters 

Max filter: 

Useful for finding the brightest points in an image 

Min filter: 

Max filter Min filter 



Digital Image Processing 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

T. Peynot 

Chapter 6  
Image Restoration and Reconstruction 

3.2  Order-Statistic Filters 

Midpoint filter 

NB: combines order statistics and averaging. 
Works best for randomly distributed noise such as Gaussian or uniform 

Alpha-trimmed mean filter 

Where gr represents the image g in which the d/2 lowest and d/2 highest 
intensity values in the neighbourhood Sxy were deleted 
NB: d = 0 => arithmetic mean filter, d = mn-1 => median filter 
For other values of d, useful when multiple types of noise (e.g. combination 
of salt-and-pepper and Gaussian Noise) 
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Uniform noise + salt-and-pepper noise 

Arithmetic mean filter 

Median filter Alpha-trimmed mean filter 

Geometric 
mean filter 
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4  Periodic Noise Reduction by Frequency Domain Filtering 

•  Periodic noise appears as concentrated bursts of energy in the FT, at 
locations corresponding to the frequencies of the periodic interference 
•  Approach: use a selective filter to isolate the noise 

3.1  Bandreject Filters 
3.2  Bandpass Filters 
3.3  Notch Filters : reject (or pass) frequencies in predefined neighbourhoods 
about a center frequency 
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Notch (reject) filters 
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Degraded image 

spectrum 

Notch pass filter 

Filtered image 
Spatial noise pattern 
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5  Estimating the Degradation Function 

3 main ways to estimate the degradation function for use in an image restoration: 
1.  Observation 
2.  Experimentation 
3.  Mathematical modeling 

5.1  Estimation by Image Observation 

The degradation is assumed to be linear and position-invariant 
•  Look at a small rectangular section of the image containing sample structures, 
and in which the signal content is strong (e.g. high contrast): subimage gs(x,y) 
•  Process this subimage to arrive at a result as good as possible: 
 
Assuming the effect of noise is negligible in this area:  
 
=> deduce the complete degradation function H(u,v)  (position invariance)  
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5.2  Estimation by Experimentation 

If an equipment similar to the one used to acquire the degraded image is available: 
•  Find system settings reproducing the most similar degradation as possible 
•  Obtain an impulse response of the degradation by imaging an impulse (dot of light) 
 
FT of an impulse = constant => 

A = constant describing the 
strength of the impulse 
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5.3  Estimation by Modeling 

Example 1: degradation model proposed by Hufnagel and Stanley [1964] based 
on the physical characteristics of atmospheric turbulence: 
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Example 2: derive a mathematical model starting form basic principles 
Illustration: image blurring by uniform linear motion between the image and the 
sensor during image acquisition 
If T is the duration of exposure the blurred image can be expressed as: 

FT[g(x,y)] => 

E.g. if uniform linear motion in the x-direction only, at a rate  x0(t) = at/T 

NB: H = 0 for u = n/a 



Digital Image Processing 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

T. Peynot 

Chapter 6  
Image Restoration and Reconstruction 

If motion in y as well: 
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6  Inverse Filtering 

(array operation) 

⇒  Even if we know H(u,v), we cannot recover the “undegraded” image exactly 
because N(u,v) is not known 
⇒  If H has zero or very small values, the ration N/H could dominate the estimate 
 
One approach to get around this is to limit the filter frequencies to values near the 
origin 
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7.  Minimum Mean Square Error (Wiener) Filtering 

Objective: find an estimate    of the uncorrupted image such that the mean square 
error between them is minimized: 
Assumptions: 
•  Noise and image are uncorrelated 
•  One or the other has zero mean 
•  The intensity levels in the estimate are a linear function of the levels in the 
degraded image 
 
The minimum of the error function e is given by: 

Power spectrum of the noise (autocorrelation of noise) 

Power spectrum of the undegraded image 
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7.  Minimum Mean Square Error (Wiener) Filtering 

When the two spectrums are not known or cannot be estimated, approximate to: 

Where K is a specified constant 
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Image + motion 
blur + add. noise 

Result of  
Inverse filtering 

Result of  
Wiener filtering 

Reduced noise variance 

Reduced noise variance 
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8. Geometric Mean Filter 

Generalization of the Wiener filter: 

α and β being positive real constants 

α = 1  => inverse filter 
α = 0  => parametric Wiener filter (standard Wiener filter when β = 1) 
α  = 1/2 => actual geometric mean 
α = 1/2 and β = 1 => spectrum equalization filter 
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9. Constrained Least Squares Filtering 

In vector-matrix form: 

g, f, η vectors of dimension MNx1 
H matrix of dimension MNxMN => very large ! 
 
Issue: Sensitivity of H to noise 
⇒  Optimality of restoration based on a measure of smoothness: e.g. Laplacian 
⇒  Find the minimum of a criterion function C: 

 
 
 
 
subject to the constraint: (Euclidean vector norm) 
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9. Constrained Least Squares Filtering 

Frequency domain solution: 
 
 
 
 
 
With:  
•  γ = parameter to adjust so that the constraint is satisfied 
•  P(u,v) = Fourier Transform of the function: 

NB: γ = 0  =>  Inverse Filtering 
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9. Constrained Least Squares Filtering 

Wiener Filtering 

Results adjusting γ interactively 
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9. Constrained Least Squares Filtering 

Adjusting γ so that the constraint is satisfied 
(an algorithm) 
 
Goal: find γ so that: 
 
1.  Specify an initial value of γ  
2.  Compute the corresponding residual 

3.  Stop if Eq. (1) is satisfied. Otherwise:   

•  if        , increase γ ,  

•  if        , decrease γ ,  

•  Then return to step 2. 

(1)          (a = accuracy factor) 
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9. Constrained Least Squares Filtering 

Adjusting γ so that the constraint is satisfied 
 
 

(average) 

(variance) 

where: 
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9. Constrained Least Squares Filtering 

Adjusting γ so that the constraint is satisfied 
 
 

Restoration of: 
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