<u>CHE 362</u>

OPTIMIZATION OF CHEMICAL ENGINEERING PROCESSES

INTRODUCTION:

OPTIMIZATION is the use of specific methods to determine the most cost-effective and efficient solution to a problem or design for a process. This technique is one of the major quantitative tools in industrial decision making. **A** wide variety of problems in the design, construction, operation, and analysis of chemical plants (as well as many other industrial processes) can be resolved by optimization. The goal of optimization is to find the values of the variables in the process that yield the best value of the performance criterion. A trade-off usually exists between capital and operating costs. The described factors-process or model and the performance criterion-constitute the optimization "problem."

Typical problems in chemical engineering process design or plant operation have many (possibly an infinite number) solutions. Optimization is concerned with selecting the best among the entire set by efficient quantitative methods.

Computers and associated software make the necessary computations feasible and cost effective. To obtain useful information using computers, however, requires;

- i. critical analysis of the process or design,
- ii. insight about the appropriate performance objectives i.e., what is to be accomplished, and
- iii. use of past experience, sometimes called engineering judgment.

WHY OPTIMIZE?

Engineers work to improve the initial design of equipment and strive to enhance the operation of that equipment once it is installed so as to realize the largest production, the greatest profit, the minimum cost, the least energy usage, and so on. Monetary value provides a convenient measure of different but otherwise incompatible objectives, but not all problems have to be considered in a monetary (cost versus revenue) framework.

In plant operations, benefits arise from improved plant performance, such as improved yields of valuable products (or reduced yields of contaminants), reduced energy consumption, higher processing rates, and longer times between shutdowns.

Optimization can also lead to reduced maintenance costs, less equipment wear, and better staff utilization. In addition, intangible benefits arise from the interactions among plant operators, engineers, and management. It is extremely helpful to systematically identify the objective, constraints, and degrees of freedom in a process or a plant, leading to such benefits as improved quality of design, faster and more reliable troubleshooting, and faster decision making.

EXAMPLES OF APPLICATIONS OF OPTIMIZATION;

Optimization can be applied in numerous ways to chemical processes and plants, typical projects in which optimization has been used include

- 1. Determining the best sites for plant location.
- 2. Routing tankers for the distribution of crude and refined products.
- 3. Sizing and layout of a pipeline.
- 4. Designing equipment and an entire plant
- 5. Scheduling maintenance and equipment replacement.
- 6. Operating equipment, such as tubular reactors, columns, and absorbers.
- 7. Evaluating plant data to construct a model of a process.
- 8. Minimizing inventory charges.
- 9. Allocating resources or services among several processes.
- 10. Planning and scheduling construction.

These examples and many more not listed provide an introduction to the types of variables, objective

functions, and constraints of optimization problem.

GENERAL PROCEDURE FOR SOLVING OPTIMIZATION PROBLEMS

No single method or algorithm of optimization can be applied efficiently to all problems. The method chosen for any particular case depends primarily on;

- i. the character of the objective function and whether it is known explicitly,
- ii. the nature of the constraints, and
- iii. the number of independent and dependent variables.

The six general steps for the analysis and solution of optimization problems are given below.

- 1. Analyze the process itself so that the process variables and specific characteristics of interest are defined; that is, make a list of all of the variables.
- 2. Determine the criterion for optimization, and specify the objective function in terms of the variables defined in step 1 together with coefficients. This step provides the performance model (sometimes called the economic model when appropriate).
- 3. Using mathematical expressions, develop a valid process or equipment model that relates the input-output variables of the process and associated coefficients. Include both equality and

inequality constraints. Use well-known physical principles (mass balances, energy balances), empirical relations, implicit concepts, and external restrictions. Identify the independent and dependent variables to get the number of degrees of freedom.

- 4. If the problem formulation is too large in scope:
 - i. break it up into manageable parts or
 - ii. simplify the objective function and model
- 5. Apply a suitable optimization technique to the mathematical statement of the problem.
- 6. Check the answers, and examine the sensitivity of the result to changes in the coefficients in the problem and the assumptions.

The cited order may not be followed exactly, but all the steps should be covered. Shortcuts in the procedure are allowable, and the easy steps can be performed first. The general objective in optimization is to choose a set of values of the variables subject to the various constraints that produce the desired optimum response for the chosen objective function.

Steps 1, 2, and 3 deal with the mathematical definition of the problem, that is, identification of variables, specification of the objective function, and statement of the constraints.

Step 4 suggests that the mathematical statement of the problem be simplified as much as possible without losing the essence of the problem.

Step 5 involves the computation of the optimum point. Here, quite a few techniques exist to obtain the optimal solution for problems such as;

- i. Optimization of Unconstrained Functions: One-Dimensional Search
- ii. Unconstrained Multivariable Optimization
- iii. Linear Programming (LP) and Applications
- iv. Nonlinear Programming with Constraints
- v. Mixed-Integer Programming
- vi. Global Optimization for Problems with Continuous and Discrete Variables

Several methods for handling the problems stated above will be examined later when considering Optimization as a course in higher undergraduate level. And among these methods are the use of computer applications, some of which will be considered here.

OPTIMIZATION WITH EXCEL SOLVER

Microsoft Excel solver is a powerful add-on tool to solve and analyze optimization problems. Optimization deals with selecting the best option among a number of possible choices that are feasible or don't violate constraints. Solver can be used to adjust parameters in a model to best fit data, increase profitability of a potential engineering design, or meet some other type of objective that can be described mathematically in a spreadsheet. In addition to solving equations, the Excel solver allows us to find solutions to optimization problems of all kinds (single or multiple variables, with or without constraints).

Product Mix Example

This part of our Solver Tutorial takes you step by step through the process of creating a Solver model, using a Product Mix example. We'll first consider how to define the problem and write out formulas for the objective and constraints.

Problem 1: Imagine that you manage a factory that produces four different types of wood paneling. Each type of paneling is made by gluing and pressing together a different mixture of pine and oak chips. The following table summarizes the required amount of gluing, pressing, and mixture of wood chips required to produce a pallet of 50 units of each type of paneling:

	Resources Re	equired per Pal	let of Paneling	Туре
	Tahoe	Pacific	Savannah	Aspen
Glue (quarts)	50	50	100	50
Pressing (hours)	5	15	10	5
Pine chips (pounds)	500	400	300	200
Oak chips (pounds)	500	750	250	500

In the next production cycle, you have 5,800 quarts of glue; 730 hours of pressing capacity; 29,200 pounds of pine chips; and 60,500 pounds of oak chips available. Further assume that each pallet of Tahoe, Pacific, Savannah, and Aspen panels can be sold for profits of \$450, \$1,150, \$800, and \$400, respectively.

Solution: Before we implement this problem statement in either Excel, let's write out formulas corresponding to the verbal description above.

- Let X1 = Number of Tahoe pallets produced
 - X2 = Number of Pacific pallets produced
 - X3 = Number of Savannah pallets produced
 - X4 = Number of Aspen pallets produced,

Therefore, the objective function is to: Maximize: 450 X1 + 1150 X2 + 800 X3 + 400 X4

A pallet of each type of panel requires a certain amount of glue, pressing, pine chips, and oak chips. Therefore, the constraints for this problem can be expressed as follows:

Subject to:

$50 X1 + 50 X2 + 100 X3 + 50 X4 \le 5800$	(Glue)
$5 X1 + 15 X2 + 10 X3 + 5 X4 \le 730$	(Pressing)
$500 X1 + 400 X2 + 300 X3 + 200 X4 \le 29200$	(Pine chips)
$500 X1 + 750 X2 + 250 X3 + 500 X4 \le 60500$	(Oak chips)

Since the number of products built cannot be negative, we'll also have non-negativity conditions on the variables:

X1, X2, X3, X4 \ge 0.

Using Excel's Built-In Solver - Product Mix Example:

Essential Steps: To define an optimization model in Excel you'll follow these essential steps:

- 1. Organize the data for your problem in the spreadsheet in a logical manner.
- 2. Choose a spreadsheet cell to hold the value of each decision variable in your model.
- 3. Create a spreadsheet formula in a cell that calculates the objective function for your model.
- 4. Create a formulas in cells to calculate the left hand sides of each constraint.
- 5. Use the dialogs in Excel to tell the Solver about your decision variables, the objective, constraints, and desired bounds on constraints and variables.
- 6. Run the Solver to find the optimal solution.

Creating an Excel Worksheet:

I				Panel Manufactu	ringadar - Mic	rosoft Excel			0-0	8
Fil	Home Ins	ert Page Layou	t Formulas	Data Rev	iew View	Developer Ri	sk Solver Platform		v 🕢 🗆	g 83
	A	В	С	D	E	F	G	н	1	
1			Pane	I Type						-
3		Tahoe	Pacific	Savannah	Aspen					
4	Pallets	0	0	0	0	Total Profit				1
5	Profit	\$450	\$1,150	\$800	\$400	\$0				
6										
7		Resourc	es Requi	red per Pall	et Type	Used	Available			-
8	Glue	50	50	100	50	0	5,800	quarts		
9	Pressing	5	15	10	5	0	730	hours		
10	Pine chips	500	400	300	200	0	29,200	pounds		
11	Oak chips	500	750	250	500	0	60,500	pounds		
12	and the second s					1				
H H Read	Panel Manuf V CO V	acturing 🥙				040		120% 🕤	0) (+)

- Cells B4, C4, D4 and E4 are to represent our decision variables X1, X2, X3, and X4 i.e representing the number of pallets of each type of panel to produce. The Solver will determine the optimal values for these cells.
- ✤ Formula for cell F5 (Total Profit): =B5*B4+C5*C4+D5*D4+E5*E4
- ◆ or equivalently, F5 (Total Profit): =SUMPRODUCT(B5:E5,B4:E4)
- ✤ Formula for cell F8: =SUMPRODUCT(B8:E8,\$B\$4:\$E\$4)
- ✤ The formula in F8 can now be drag for F9:F11
- In cells G8:G11, we've entered the available amount of each type of resource (corresponding to the right hand side values of the constraints).

Understanding the Excel Solver Dialogs:

- Click Solver button on the Excel Data tab, to displays the Solver Parameters dialog.
- ◆ In the Set Objective (or Set Target Cell) edit box, we type or click on cell F5, the objective function.
- ◆ In the By Changing Variable Cells edit box, we type B4:E4 or select these cells with the mouse.

	A	8	C.	D	E	F	G.	Solver Parameters			
1				10721		10		President and a second s			
5			Pane	el Type				Col Charlen	anar		100
1		Tahoe	Pacific	Savannah	Aspen	10000000		sel orderater	18.95		1980
ł.	Pallets	0	0	0	0	Total Profit		Tei 🔹 Max	O Mo O Select	10	
ŝ,	Profit	\$450	\$1,150	\$800	\$400	\$0					
								Ey changing variable close			1921
		Resou	rces Requ	ired per Pall	et Type	Used	Available	ant-seat			120
	Glue	50	50	100	50	0	5,800	Subject to the Constraints:			
0	Pressing	5	15	10	5	0	730				800 N
)	Pine chips	500	400	300	200	0	29,200				14
1	Oak chips	500	750	250	500	0	60,500				Prande
2	21010100A002										Delie to
3											
4											Beset Al
5							_	10000		- 1	Load/Seve
7							-	Maje Unconstrained Va	riables Non-Negative		
8								Spect a Solving Method:	Simplex UP		Ogtions
0								Foliana Mathad			
0							_	Select the CBS Noticean	entries for follow Doublems that as	e anoth nothing	Salarit Rive 10 Canadara
1							_	engrie für kneur Solver Pi	oblems, and select the Evolutional	ry engine for Solver ;	problems that are
5							-	nor-smooth.			
5							_				

- * To add the constraints, we click on the Add button in the Solver Parameters dialog and;
 - ➢ select cells F8:F11 in the Cell Reference edit box (the left hand side)
 - select cells G8:G11 in the Constraint edit box (the right hand side)
 - \blacktriangleright the default relation as <=
 - ➢ press OK.

		0	0	0	100	P	10	1.1		1	10	1 1		
-		0		U	0	P.	0	n.			- Ps/		- 64	11
2			Pan	el Type										
3		Tahoe	Pacific	Savannah	Aspen									
4	Pallets	0	0	.0	0	Total Profit			-					
5	Profit	\$450	\$1,150	\$800	\$400	\$0			Add Cor	obaint :				-
ŝ						Second Second	C. Service and							_
7		Resou	rces Requ	ired per Palle	et Type	Used	Available		Cgi Re	eference:		Cogitta	nt:	
8	Glue	50	50	100	50	0	5,800	quarts	\$*\$8:	\$P\$11	1 CA	• +\$5\$8	16811	16
	Pressing	5	15	10	5	0	730	hours					12	
9		500	400	300	200	0	29,200	pounds		QK		ad D	Gene	2
9	Pine chips		750	250	500	0	60,500	pounds	4	_	_			
9 10	Pine chips Oak chips	500	1.00											

We choose the Add button again (either from the Add Constraint dialog above, or from the main Solver Parameters dialog) to define the non-negativity constraint on the decision variables.

r Parameters			1
Set Objective:	9*85		(24
Tel e Ber (Mg O year of	0	
By Changing Variable Cells:			
\$854.9554			125
Subject to the Constraints:			
\$5\$4;\$5\$4 >= 0 \$*\$8:\$*\$11 <= \$6\$8:\$6\$11	j.		édd
N. C. M. S. M. MILLING		1	Qvinge
		1	Delete
		1	fjeset Al
		1	Load/Save
Make Unconstrained Varia	bles Non-Negative		-
Sglect a Solving Method:	Simplex LP		Optons
Solving Hethod			
Select the GRG Nonlinear er engine for linear Solver Prot non-smooth.	gree for Solver Problems that ar Seme, and select the Evolutional	e smooth nonlineur. 1 y engine for Solver p	Select the LP Singles problems that are
	1.00		1

- To find the optimal solution, simply click on the Solve button. After a moment, the Excel Solver returns the optimal solution in cells B4 through E4.
- This means that we should build 23 pallets of Tahoe panels, 15 pallets of Pacific panels, 39 pallets of Savannah panels, and 0 pallets of Aspen panels. This results in a total profit of \$58,800 (shown in cell F5).

!	Home 3	hant Fage	Layout Fee	mulas Data	Patriese	view Decema	ier Rick Sel	ver Platform	Solver Results	. 😁
	A	В	Ç	D	E .	F	G	H	Former Strengt and the second strength and the second strength and	ALC: NOT
	~								Solver found a solution. All Constraints and optim conditions are satisfied	with Amounts
			Pane	el Type						Excuse
ł		Tahoe	Pacific	Savannah	Aspen				Grep Solver Solution	Sensitivity.
4	Pallets	23	15	39	0	Total Profit	N		O Sandra Complete and	Units
5	Profit	\$450	\$1,150	\$800	\$400	\$58,800			C Banne Crôna more	
6						Transa and	(1)		Agturn to Solver Parameters Dialog	Outline Reports
7.		Resou	rces Requ	ired per Palle	nt Type	Used	Available			
8	Glue	-50	50	100	50	5,800	5,800	quarts	QK S Gancel	Save Scenario
9	Pressing	5	15	10	5	730	730	hours		
10	Pine chips	500	400	300	200	29,200	29,200	pounds	Reports	
11	Oak chips	500	750	250	500	32,500	60,500	pounds	Creates the type of report that you specify, and play	ors each report on a
12						1			separate sheet in the workbook	

The message "Solver found a solution" appears in the Solver Results dialog, as shown above. We now click on "Answer" in the Reports list box to produce an Answer Report, and click OK to keep the optimal solution values in cells B4:E4.

After a moment, the Solver creates another worksheet containing an Answer Report, like the one below, and inserts it to the left of the problem worksheet in the Excel workbook.

	1 -7 -	(* - (#		Panel M	enufactu	 subcent 	Microso	oft Excel			0	103 107
	-	ne Iniet.	Pagela	jout Formulas	Dyta	Reven	View	Develope	er Reks	cher Patfare	= 0	10 A
	A B	ć		D		E		F.	G	H	1	J
1	Microso	ft Excel 1	4.0 Ansv	ver Report								
2	Worksh	eet: [Pane	I Manut	acturing.xlsx]P	anel N	lanufact	uning					
1	Report	Created: 1	/30/2011	111:41:33 PM								
£3	Result	Solver fou	ind a so	lution. All Con	straint	s and op	timali	ity condi	tions are	satisfied.		
5	Solver	Engine										
٤.	Engine	e: Simplex I	LP									
6	Solutio	on Time: 0	016 Seco	onds.								
5	meratik	ons: 3 Subp	problems	0								
9	Solver	Options			2010100		4.01					
0	Max T	ime Unlimb	ed, flera	tions Unimited,	Precisio	n 0.0000	01	20100100	1993			
1.	Max S	ubproblem	s Unimite	ed, Max integer 3	Sols Un	imited, in	teger.	Toleranci	e 0%			
2												
2	Colum	Pat de-										
-	Cojective	e cen (Max		Original Mahrie	- Elec	a Malaza	-					
	cell	Profit Tot	the Provide	original value	FIN	den of						
8	3630	Pront Tota	B PTOTE	\$0		\$58,80	<u>0</u>					
1												
2	Variation	Colta										
0.	Cell	Nan	ne	Original Value	Fina	I Value	Ir	nteger				
ł.	\$8\$4	Palets T	ahoe	0	1	2	3 Con	tin	-			
2	SC\$4	Palets Pa	acific	0	÷		5 Con	6n	2			
3	\$D\$4	Patets Si	avannah	0	ũ.	3	9 Con	diri -	2			
4	SES4	Pallets Ad	spen	0			0 Con	tin.				
5	2000		Alter S						51			
6												
7	Constrai	nts										
ð.	Cell	Nan	ne	Cell Value	Fo	rmula		Status	Slack			
9	\$F\$8	Glue Used	1	5,800	\$F\$8<	-\$G\$8	Bind	sing	0			
	\$F\$9	Pressing I	Used	730	\$F\$9<	-\$G\$9	Bind	gnit	0			
0	SF\$10	Pine chips	s Used	29,200	\$F\$10	<#\$G\$10	Bind	sing	0			
0	the second se	Oak chips	Used	32,500	\$F\$11	<#\$G\$11	Not	Binding	28000			
012	\$F\$11	and in the second second second second	a factor of the	23	\$8\$4>	=0	Not	Binding	23			
0123	\$F\$11 \$8\$4	Palets Ta	ance	(A 4)			Mod 1	Rinding	15			
01234	\$F\$11 \$8\$4 \$C\$4	Palets Ti Palets Pi	acific	15	\$C\$4>	*0	TANE	Service of				
012045	\$F\$11 \$8\$4 \$C\$4 \$D\$4	Palets Tr Palets Pi Palets Si	acific avannah	15 39	\$0\$4>	=0	Not	8inding	39			
0120456	5F\$11 5854 5C54 5D54 5E54	Patets Ti Patets Pi Patets Si Patets Ad	acific avannah spen	15 39 0	\$0\$4> \$0\$4> \$E\$4>	=0 =0 =0	Not	Binding Sing	39 0			
0120456	5F\$11 58\$4 5C\$4 5D\$4 5E\$4	Patets Tr Patets Pi Patets Si Patets At swer Repo	acific avannah spen rt 1 / 2	15 39 0 anel Hanufacturing	\$0\$4> \$0\$4> \$E\$4>	=0 =0 =0	Not	Binding Sing	39 0			•1

This report shows the original and final values of the objective function and the decision variables, as well as the status of each constraint at the optimal solution. Notice that the constraints on glue, pressing, and pine chips are binding and have a slack value of 0. The optimal solution would use up all of these resources; however, there were 28,000 pounds of oak chips left over. If we could obtain additional glue, pressing capacity, or pine chips we could further increase total profits, but extra oak chips would not help in the short run.

Problem 2: Hock Schittkowski problem: Nonlinear Programming with Excel

Min $x_1x_4 (x_1 + x_2 + x_3) + x_3$ s.t. $x_1 x_2 x_3 x_4 \ge 25$ $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 40$ $1 \le x_1, x_2, x_3, x_4 \le 5$ $x_0 = (1,5,5,1)$

This problem has a nonlinear objective that the optimizer attempts to minimize. The variable values at the optimal solution are subject to (s.t.) both equality (=40) and inequality (>25) constraints. The product of the four variables must be greater than 25 while the sum of squares of the variables must also equal 40. In addition, all variables must be between 1 and 5 and the initial guess is $x_1 = 1$, $x_2 = 5$, $x_3 = 5$, and $x_4 = 1$.

Solution:

x	5	- C ² - ∓							
	ILE HO	DME INSE	RT PAG	E LAYOUT	FORMU	AS	DATA	RE	VIEW
	From Acces From Web From Text	From Other Sources ~	Existing Connectio	Refresh All -	Conne Proper	ctions ties nks	A↓ ZA Z↓ So	A Z ort	Filter
F5		• : ×		ic l	connections	•			Joint Cerrin
	А	В	С	D	Е	F		G	F
1									
2									
3	Variables	X1	X2	X3	X4	Mir	ni		
4	Lower	1	1	1	1				
5	Values	1	5	5	1	16	5		
6	Upper	5	5	5	5				
7									
8		Constraints							
9	1	25	>=	25					
10	2	52	=	40					
11									

se <u>t</u> Objective:	SFS5		
^{fo:} <u>M</u> ax By Changing Variable Cell	● Mi <u>n</u>	0	
\$8\$5:\$E\$5	49 ⁷		
Subject to the Constraints	8		
\$B\$10 = 40 \$B\$5:\$E\$5 <= 5		*	Add
\$B\$9 >= 25			<u>C</u> hange
		[<u>D</u> elete
		[<u>R</u> eset All
		-	Load/Save
Make Unconstrained	/ariables Non-Negative		
Select a Solving Method:	GRG Nonlinear		O <u>p</u> tions
Solving Method Select the GRG Nonlinea Simplex engine for linea problems that are non-s	r engine for Solver Problems that r Solver Problems, and select the mooth.	: are smooth nonli Evolutionary engi	inear. Select the Li ne for Solver

I = 5 · e · ↓

1	ILE HO	OME INSE	RT PAG	E LAYOUT	FORMU	LAS	DATA	REVIE
	From Acces From Web From Text G	From Other Sources =	Existing Connectio	Refrest All -	Connection	nties nks	21 🔏 31 Se	ort Fi
в.	11	* I ×	~ f.	é				
1	A	B	c	D	E	F		G
1								
2								
3	Variables	X1	×2	X3	×4	Mini	8	
4	Lower	1	1	1	1			
5	Values	1	4.744	3.82	1.38	17.0	1	
6	Upper	5	5	5	5			
7								
8		Constraints						
9	1	24.9999863	>=	25				
10	2	40.0000176	-	40				

×	🕞 🍤 🗸 🐡 🗸	÷					
E	ILE HOME I	VSERT P/	AGE LAYO	UT F	ORMULAS	DATA	REVIEW
	From Access From Web From Text From Text Get External	her Existi Connec	ng Re	efresh All - B	Connections Properties Edit Links ections	¥1 Ş1	Sort & Filter
A	50 ¥ 1	× ×	fx				
1 2 2 4 5 6 7 6 8 10 11 12 12 14 16 16 17 10	B C D Microsoft Ease Ib.6 An York Kneet, IC-HE 202.at Hoport Created, 23-Mag Result, Solver cound as General Engine Jointeen Solver Engine Jointeen Karatensi & Solverolimers Solverolimers Mar Time Universe Solverolimers Mar Time Universe Solverolimers Mar Time Universe Isradem Solverolimers Mar Time Universe Solverolimers Mar Time Universe Isradem Solverolimers Mar Time Universe Solverolimers Mar Time Universe Isradem Solverolimers Discusse Cell (Min) Solverolimers Solverolimerse Solverolimerse	swor Report sa IShoeti -20 10,3243 A Iolution. All C nds. 0 sns Unlimited, Fr Jatian Size 100, R d, Mai Integer So Valu² inal Value 16 17,014000	P Onstraints relation 0.000 andiam Eerd ta Unlimited,	a r and optim noon, Use Aut D. Derivative Integer Toler	H I hality condition smalls Scaling s Forward, Pequi ance TC, Assume	y na are sat re Bounds NonNegati	K L M
10 20	Cell Name triginal V	Valurinal Value	Integer				
24	◆田幸! Values ⊠1	1 1	Centin				
22	THE VALUE X2	5 3.8202282	Contin				
24	#E#5 Values X4	1 1.3795276	Contin				
26	Constraints						
20	Cell Name Cell Va	lue Formula	Status	Slack			
	#D#1 Constraint 40.000	0176 #E0#10=40	Dinding				
20			and the second s				
20	#D#C Constraint 24,9990	0000 #D#0>+25	Dinding				
20 00 01	#D#C Constraint 24.0000 #D#C Values H1	0000 00000-25 1 0005<-5	Dinding Not Dindin	0			
20 00 01 02		060 \$D\$0>=25 1 \$D\$5<=5 6861 \$C\$5<=5	Dinding Not Dindin Not Dindin	0,2563314			
20 00 01 02 00		060 0000-25 1 0005-5 5561 0005-5 787 0005-5	Dinding Not Dindin Not Dindin Not Bindin	0.2563314 1.1797213			
20 00 01 02 00 04	*D*Constraint 24.9995 *D*F Values X1 *C*F Values X2 *D*F Values X3 *D*F Values X3 *D*F Values X4 1.37952 *E*F Values V1	1060 +0+05+26 1 +0+5+5 6061 +0+5+5 1787 +0+5+6 1786 +848+8 1786 +848+8	Dinding Not Dindin Not Bindin Not Bindin Not Bindin	0 4 0,2563314 1,1787213 3,6204724			
80 00 01 02 00 04 04 05		0000 00000-25 1 0005-25 5051 0005-5 1787 0005-5 1785 0005-5 1785 0005-5 18800-1	Dinding Not Dindin Not Bindin Not Bindin Not Bindin Binding	0 0 2563314 1.1787213 3.6204724 0 2.743666			
80 00 01 02 00 04 04 05 04 05 04		0000 000000000000000000000000000000000	Not Dindin Not Dindin Not Bindin Not Bindin Binding Not Bindin Not Bindin	0 4 0.2563314 1.1797213 3.6204724 0 2.7436686 0 0.0002787			
20 00 01 02 00 04 04 05 05 07 00	#0#1 Constraint 24,009 9D#1 Values X1 9C#1 Values X2 4C#1 Values X3 9D#1 Values X3 9D#1 Values X4 9D#1 Values X1 9D#5 Values X2 9D#5 Values X2 9D#5 Values X2 9D#5 Values X4 9D#5 V	0000 #0#0#0=25 1 #0#54=5 5061 #0#54=5 1787 #0#54=5 1786 #K#N=N 1 #N#55=1 1797 #0#55=1 1797 #0#55=1	Not Dinding Not Dindin Not Dindin Not Bindin Binding Not Bindin Not Bindin Not Bindin	0 4 0.2563314 1.1797213 3.6204724 0 2.7436686 2.9202787 0.3795276			