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A field known as Systems Biology is emerging, from
roots in the molecular biology and genomic biology
revolutions—the succession of which has led biomedical
scientists to recognize that living systems can be studied not
only in terms of their mechanistic, molecular-level compo-
nents but also in terms of many of them simultaneously. This
prospect of understanding how biological entities function
through the framework of integrated operation of compo-
nent parts holds extraordinary promise for medical appli-
cations, as well for broader societal applications such as
the environment, agriculture, materials/manufacturing, and
national defense.

Some definitions of Systems Biology are available.
Ideker et al.22 suggest the following: “Systems Biology
does not investigate individual genes or proteins one at a
time, as has been the highly successful mode of biology
for the past 30 years. Rather, it investigates the behavior
and relationships of all the elements in a particular bio-
logical system while it is functioning.” A description by
Kitano27 is that “To understand biology at the system level,
we must examine the structure and dynamics of cellular
and organismal function, rather than the characteristics of
isolated parts of a cell or organism.” The National Institute
of General Medical Sciences at NIH1 provides a slightly
different perspective: “Systems Biology seeks to predict the
quantitative behavior of an in vivo biological process un-
der realistic perturbation, where the quantitative treatment
derives its power from explicit inclusion of the process
components, their interactions, and realistic values for their
concentrations, locations, and local states.”

Systems Biology can also be defined operationally, as
by the MIT Computational & Systems Biology Initiative,
in terms of the “4 M’s”—Measurement, Mining, Modeling,
and Manipulation—illustrated schematically in Fig. 1 (see
http://csbi.mit.edu/). In this post-genomic era, Measure-
ment can be undertaken in a high-throughput, multivariate
manner using various kinds of array technologies. Because
this multivariate data then is relatively recalcitrant to hy-
pothesis generation by means of unaided human intuition,
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computational algorithms for Mining the data to generate
hypotheses concerning the potential interpretation of these
data sets is necessary. In order to consequently develop new
predictions for experimental test (or design), computational
Modeling is required for similar reason: unaided human in-
tuition likely cannot produce effective predictions concern-
ing complex, interconnected, nonlinear molecular systems.
Finally, in order to test those model predictions or create a
new technology or product, molecular-level manipulation
is needed, employing genetic, biochemical, or materials in-
terventions. Thus, Systems Biology involves a multivariate
approach comprising topological and dynamical properties
and aimed ultimately at quantitative prediction, for basic
scientific understanding or technological design. It must
be noted that the complexity of living systems does not
reside solely in the number of components and interac-
tions treated, nor in their associated structural and physico-
chemical properties, but also in the hierarchical connection
across space and time scales from gene-level to cell-
level to tissue-level to organism-level to population-level
(see Fig. 2).

It must be emphasized that Systems Biology is not
merely a contemporary manifestation of traditional bio-
engineering, despite the similarity of the “4 M’s” approach
to engineering perspective. The crucial difference is that the
kinds of measurement and manipulation in modern Sys-
tems Biology is at the molecular level, and the data sets
being generated and considered are highly-multivariate be-
cause of the existence now of high-throughput experimen-
tal assays at the genomic and proteomic levels. Systems
Biology is aimed at true molecular and cellular mecha-
nism underlying operation of biological systems, rather
than phenomenological description to which higher lev-
els of organization (e.g., tissue, organ, and organism) are
restricted. Thus, we specifically and categorically restrict
our definition of Systems Biology to require molecular-
level information. Moreover, we emphasize that Bioengi-
neering does not uniquely encompass this new field, but
rather is one of the key disciplines required along with
various others (e.g., molecular/cell biology, genetics, bio-
chemistry, mathematics, and computer science) to move it
forward.
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FIGURE 1. Operational definition of Systems Biology in terms of the 4 M’s: measurement, mining, modeling, manipulation (see
http://csbi.mit.edu/).

As evidence of the enormous impact systems thinking
has had on biology, consider that in the last 3 years it
has led to an explosion of new research institutes, com-
panies, conferences, and academic departments, all having
the words “systems biology” in the title or mission state-
ment. Several journals are now either entirely devoted to re-
porting systems biology research or are sponsoring regular
sections devoted to current issues in systems or computa-
tional biology. And under the leadership of Elias Zerhouni,
the National Institutes of Health released a “roadmap”
for 21st century medicine that includes interdisciplinary
science and integrative systems biology as core focus
areas.47

STATE OF THE ART IN SYSTEMS BIOLOGY
RESEARCH

Gene-Protein-Metabolite Networks

One of the most exciting trends in modern biology in-
volves the use of high-throughput genomic, proteomic, and
metabolomic technologies to construct models of complex
biological systems and diseases. While the notion of sys-
tems science has existed for some time,2,5 these approaches
have recently become far more powerful due to a host of new
“omic” technologies that are high-throughput, quantitative,
and large scale.50 These technologies typically depend on
knowing the complete DNA sequences in the organism’s

FIGURE 2. Illustration of the multiple dimensions biological systems complexity.
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genome. For instance, DNA microarrays involve spotting
thousands of these gene sequences on a solid substrate to
bind and detect the complementary RNAs. Global changes
in RNA expression can be measured with DNA microar-
rays,10 and networks can be inferred in terms of gene ex-
pression effects (e.g., Lee et al.30; Gardner et al.14). An-
other group of technologies gives us insight into how these
molecules interact with one another to form a large and
complex intracellular network. For instance, procedures
such as yeast two-hybrid or chromatin immunoprecipita-
tion are being applied systematically to screen for “all” the
protein–protein or protein–DNA interactions that occur in
a cell at a particular condition or point in time. The result-
ing network of interactions yields information on how the
cell transmits information in response to stimuli and dy-
namically forms the molecular machines required for life
(e.g., Bar-Joseph et al.4; Haugen et al.21; Said et al.39).
The more technically-challenging quantitative measure-
ment of changes in protein abundance, protein phosphory-
lation state, and metabolite concentrations is also advancing
with protein arrays, mass spectrometry, and NMR among
other sophisticated techniques (e.g., Gygi et al.20; Zhou
et al.49, Griffin et al.17; Nielsen et al.33; Zhang et al.48).
A crucial conceptual point that is becoming evident is that
the most effective Systems Biology studies will incorporate
data from heterogeneous assays, enabling greater depth of
penetration into network operation (e.g., Griffin et al.18;
Gaudet et al.15).

Cell Engineering

The point of these biomolecular machines and networks,
of course, is to carry out and regulate cell behavioral func-
tions such as metabolism, proliferation, death, differentia-
tion, and migration. Because of the complexity of these pro-
cesses, a Systems Biology perspective may be anticipated
to be productively applicable to understanding of how they
are governed by the constituent molecular properties and
interactions. This area of endeavor, termed cell engineer-
ing, has a long-standing history in Bioengineering and its
importance should only grow vigorously as the experimen-
tal measurement capacity and throughput accelerates in the
omics era. There is a good present foundation in develop-
ment of useful approaches to quantitative understanding of
the operation of metabolic pathways and signaling networks
at the molecular level (e.g., Price et al.36; Levchenko31;
Gilman and Arkin16; Asthagiri and Lauffenburger3;
Lauffenburger and Linderman29). It will be necessary to
connect gene-level transcriptional networks with protein-
level posttranscriptional networks (Harbison et al., 2004),
and the interplay of these two is certainly dynamic and two-
way in nature (Alm and Arkin, 2003). A less well-resolved
issue, however, is to develop models for understanding how
the operation of these molecular pathways and networks re-
late to the cell-level behavioral functions they underlie and

regulate. This task raises exceptional difficulties because
the connections between regulatory signaling pathways and
downstream functional mechanisms are poorly identified at
this point in time. Accordingly, in the near-term relational
models are likely to be especially productive in relating
molecular-level signals to cell-level behavioral responses
(e.g., Janes et al.25; Sachs et al.38).

Integrative Systems Physiology

A further imperative challenge is to understand how be-
havior at the level of genome, proteome and metabolome
determines physiological function at the level of not only
cells but tissues and organs. Because of the inherent com-
plexity of real biological systems, the development and
analysis of highly integrative computational models based
directly on multiscale experimental data is necessary to
achieve this understanding. We refer to this model-based
approach as integrative systems physiology.

In addition to contributing to our basic understanding
of subcellular function, application of high-throughput ex-
perimental technologies to identification of the cause, di-
agnosis and possible treatment of human illness will have
a profound impact on the conduct of basic medical re-
search. While currently in a nascent stage, it will soon
be common for clinical research studies to collect genetic,
transcriptional, proteomic, multimodal imaging and clinical
data from every patient in large, carefully selected cohorts
sharing a specific disease diagnosis. The first such studies
directed at cardiovascular disease and cancer are in fact
already underway. The goal will be to use these multiscale
biomedical data sets to uncover novel insights regarding
disease mechanisms across hierarchical levels of biological
organization, to identify biological markers which correlate
with different disease states and interindividual differences
in disease risk and to suggest more effective therapeutics
targeted to meet the needs of the individual. As our knowl-
edge advances, there is no question but that integrative
computational models of biological systems will become
an intrinsic part of the decision making process in clinical
research, diagnosis and treatment, ushering in an era of
computational medicine.

A notable example of integrative modeling spanning
from the level of molecular function to that of tissue and
organ, with applications to physiological function in both
health and disease, is modeling of the heart. The first mod-
els of the cardiac action potential (AP) were developed
shortly after the Hodgkin-Huxley model of the squid AP
and were formulated in order to explain the experimental
observation, that unlike neuronal APs, cardiac APs exhibit
a long duration plateau phase.34 Over subsequent years,
these models have been extended and now describe proper-
ties of voltage-gated membrane currents and transport and
exchange processes regulating intracellular ion concentra-
tions,32 mechanisms of calcium-induced calcium-release,24
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cross-bridge cycling and force generation,37 mitochondrial
ATP production and its regulation,9 and β-adrenergic sig-
naling pathways and their actions on target proteins.40 Mod-
els have now been developed for canine, guinea pig, human
and rabbit ventricular myoyctes, sino-atrial node cells, and
atrial myocytes. These cells models have been integrated
into large-scale, biophysically and anatomically detailed
models of electrical conduction in the cardiac ventricles
which have been used to investigate the molecular basis
of life-threatening arrhythmias.41,46 Such model develop-
ment is not limited to the heart. As an additional example,
anatomically-based models and fluid dynamics simulation
of airflow in the lungs and bronchial tree are under devel-
opment and approaches to physiologically-based modeling
of respiratory function have been proposed to investigate
transport phenomena and particle distribution within the air-
ways. It is clear that integrative modeling of physiological
systems will continue to develop over time, encompassing
an expanding range of cell types as well as tissues and
organs.

PROSPECTS FOR BIOENGINEERING
CONTRIBUTIONS

Since systems biology depends so strongly on the in-
terplay between new technology and basic biological sci-
ence, Bioengineering cannot help but play a central role.
New technology development will be crucial across sev-
eral areas. First, “better, faster, cheaper” methods will be
needed for characterizing molecules and molecular inter-
actions. For instance, although current technology led to
sequencing of a single “Human Genome”, we are still quite
far from the day in which every patient’s genome can be
sequenced and analyzed. Second, new computational meth-
ods are needed to integrate and analyze all of the genomic
and post-genomic data, and here the technological gap is
even bigger. New data sets are being generated at a rate that
far outpaces our ability to interpret the results. To address
this challenge, mathematical, computer-aided models will
be needed to organize all of the global measurements at
different levels into models of cells and tissues. Bioengi-
neering will undoubtedly play a strong role in both areas,
just as it has in the past.

Similarly, there are multiple ways in which research in
biomedical engineering will drive the disciplines of inte-
grative systems physiology and computational medicine.
The first is in development of novel technologies and
the improvement of existing technologies for collection
of data on physiological function. The challenge is that
while rapid advances are being made in development of
new technologies for analysis of the genome, proteome and
metabolome, methods for investigating the physiological
function of cells, tissue and organ remain, for the most part,
notoriously low-throughput. The emerging disciplines of
micro and nanofabrication as applied to “laboratory on a

chip” technologies will have significant impact in key areas
of physiological data collection (e.g., Burns et al.7; Fritz
et al.13; Savran et al.42; Wang et al.44). The first generation
of high-throughput whole-cell assays for studying gene-
and protein-level properties on cell physiological function
are becoming available.35,45 A next crucial challenge is
to extend these kinds of high-throughput assay techniques
to tissue physiology in vitro, likely by engineering tissue
surrogates not for medical implants but for basic biology
as well as pharmacology/toxicology purposes.19,43 Pow-
erful computational analysis methods aimed at predicting
effects of molecular therapeutics are becoming available
(e.g., Kunkel et al.28; diBernardo et al.11), so their ap-
plication to the most effective experimental systems will
provide a crucial synergy. Continued development of novel
molecular imaging technologies for high-spatial resolution
mapping of peptide and protein distributions in tissue sam-
ples, magnetic resonance imaging methods for mapping ion
concentrations and metabolite levels in living tissue and or-
gans and fluorescence resonance energy transfer (FRET)
and related methods for measuring protein interactions in
living systems—both in vitro and in vivo—will also be
important.6 Magnetic resonance and tomographic imaging
systems are now being used for reconstruction of tissue and
organ geometry and micro-anatomic structure, but contin-
ued development of these technologies to increase speed
of data acquisition and spatial resolution, and especially
to enhance capabilities for specific molecular-level imag-
ing26 will be vital to the development and application of
quantitative models of physiological function.

Finally, in order to confront problems in integrative sys-
tems physiology and computational medicine, it will be
necessary to develop novel methods for representing, stor-
ing, and querying heterogeneous multiscale experimental
and simulation data sets and model descriptions. Those
who take on this task will need a broad understanding of
biology, principles of informatics and modern approaches
to computational modeling of biological systems. This will
indeed be among the most challenging and exciting tasks
confronting biomedical engineers as we move forward.

EDUCATIONAL PROGRAMS

Not surprisingly for such a high-visibility field, Systems
Biology has spurred interest from myriad researchers, some
just starting their careers, others well established but look-
ing for a “piece of the action”. So, what is the best plan for
students interested in a career in Systems Biology? Because
of the need to couple computational analysis techniques
with systematic biological experimentation, more and more
universities are offering Ph.D. programs that integrate both
computational and biological subject matter.

Because Bioengineering lies at the interface of these two
disciplines, it is poised to play a strong, and very possibly
dominant, role in systems biology education. A number



Bioengineering and Systems Biology 261

of graduate-level programs in systems biology are already
affiliated with Bioengineering (Table 1). Several of these
programs, such as the Computational & Systems Biology
Initiative at MIT, include “systems biology” directly in the
name but include in its core curriculum several Bioengineer-
ing subjects. Others, such as the Systems Biology syllabus
within Bioengineering at UCSD, are significant courses of
study offered from within a Department of Bioengineer-
ing. A number of institutions outside of Bioengineering
also offer significant programs of study, such as Harvard
Medical School, the Institute for Systems Biology, Oxford
University, and Biocentrum Amsterdam.

Given the pace of the field, it is certainly too early to
endorse a particular syllabus as the correct or best option.
However, the study of Systems Biology must lead to a
rigorous understanding of both experimental biology and
quantitative modeling. Programs might require that all stu-
dents, regardless of background, perform hands-on research
in both computer programming and in the wet laboratory.
Required coursework in biology typically includes genet-
ics, biochemistry, molecular and cell biology, with lab work
associated with each of these. Coursework in quantitative
modeling might include probability, statistics, information
theory, numerical optimization, artificial intelligence and
machine learning, graph and network theory, and nonlinear
dynamics. Of the biological coursework, genetics is partic-
ularly important, because the logic of genetics is, to a large
degree, the logic of systems biology. Of the coursework in
quantitative modeling, graph theory and machine-learning
techniques are of particular interest, because systems ap-
proaches often reduce cellular function to a search on a
network of biological components and interactions.12,23 A
course of study integrating life and quantitative sciences
helps students to appreciate the practical constraints im-
posed by experimental biology and to effectively tailor re-
search to the needs of the laboratory biologist. At the same
time, knowledge of the major algorithmic techniques for
analysis of biological systems will be crucial for making
sense of the data.

An alternative to pursuing a cross-disciplinary program
is to tackle one field initially and then learn another in
graduate school. Examples would include choosing an un-
dergraduate major in bioengineering and then obtaining a
Ph.D. in molecular biology, or starting within biochemistry
then pursuing graduate coursework in bioengineering and
systems biology. This leads to a common question: when
contemplating a transition, is it better to switch from quan-
titative sciences to biology or vice versa? Although some
feel that it is easier to move from engineering into biology,
the honest answer is that either trajectory can work. Some
practical advice is that if coming from biology, it is best to
start by becoming familiar with Unix, Perl, and Java before
diving into more complex computational methodologies. If
coming from the quantitative sciences, an effective strategy
is to jump into a wet laboratory as soon as possible.

TABLE 1. Selected programs in systems biology programs
highlighted in red involve strong participation of Bioengi-

neering faculty.

(a) Graduate Programs w/ Sys. Bio. Courses
Europe

Flanders and Ghent University
Department of Plant Systems Biology
http://www.psb.ugent.be/

Max Planck Institutes
Inst. of Molecular Genetics
Inst. of Dynamics of Complex Systems
http://lectures.molgen.mpg.de/
http://www.mpi-magdeburg.mpg.de/

University of Rostock
Systems Biology & Bioinf. Program
http://www.sbi.uni-rostock.de

University of Stuttgart
Systems Biology Group
http://www.sysbio.de/

Asia
A∗Star Bioinformatics Institute, Singapore

http://www.bii.a-star.edu.sg/
University of Tokyo

Graduate School of Information Science and
Technology

http://www.i.u-tokyo.ac.jp/index-e.htm
North America

Cornell, Sloan-Kettering, and Rockefeller Universities
Physiology, Biophysics & Systems Biology
Program in Comp. Biology and Medicine
http://www.cs.cornell.edu/grad/cbm/
http://biomedsci.cornell.edu

Massachusetts Inst. of Technology
Div. of Biological Engineering, Computational and

Systems Biology Initiative (CSBi)
http://csbi.mit.edu/

Princeton University
Lewis-Sigler Inst. for Integrative Genomics
http://www.genomics.princeton.edu

Stanford University
Medical Informatics (SMI) and BioX
http://smi-web.stanford.edu/

U. C. Berkeley
Graduate Group in Comp. & Genomic Biology
http://cb.berkeley.edu/

U. C. San Diego
Dept. of Bioengineering
http://www-bioeng.ucsd.edu/

University of Toronto
Program in Proteomics and Bioinformatics
http://www.utoronto.ca/medicalgenetics/

University of Washington
Dept. of Bioengineering, Dept. of Genome Sciences
http://www.gs.washington.edu/

Virginia Tech
Program in Genetics, Bioinf. & Comp. Biology
http://www.grads.vt.edu/gbcb/phd gbcb.htm

Washington University
Computational Biology Program
http://www.ccb.wustl.edu/

(b) Short courses
Berlin Graduate Program

Dynamics & Evolution of Cellular and Macromolecular
Processes

http://www.biologie.hu-berlin.de/
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TABLE 1. Continued.

Biocentrum Amsterdam
Molecular Systems Biology Course
http://www.science.uva.nl/biocentrum/

Cold Spring Harbor Laboratory
Course in Computational Genomics
http://meetings.cshl.org/

Institute of Systems Biology
Introduction to Systems Biology and Proteomics

Informatics Courses
http://www.systemsbiology.org

University of Oxford
Genomics, Proteomics & Beyond
http://www.conted.ox.ac.uk/cpd/biosciences/courses/
short courses/Genome Analysis.asp

(c) Emerging initiatives
German Systems Biology Research Program

http://www.systembiologie.de/
Harvard University

Department of Systems Biology
http://sysbio.med.harvard.edu/

Manchester Interdisciplinary Biocentre (MIB)
http://www.mib.umist.ac.uk/

U. Texas Southwestern
Program in Molecular, Comp. & Systems Biology
Integrative Biology Graduate Program
http://www.utsouthwestern.edu/utsw/home/education/
integrativebiology/

And what for all of this training? What jobs are new sys-
tems biologists likely to find? With the formation of myriad
new academic departments and centers, the academic job
market is booming. On the other hand, biotechnology firms
and “big pharma” have been more cautious about getting
involved.8 However, most agree that in the long term sys-
tems approaches promise to influence drug development
in several areas: (a) target identification, in which drugs
are developed to target a specific molecule or molecular
interaction within a pathway; (b) prediction of drug mech-
anism of action (MOA), in which a compound has known
therapeutic effects but the molecular mechanisms by which
it achieves these effects are unclear; and (c) prediction of
drug toxicity and properties related to absorption, distri-
bution, metabolism, and excretion (ADME/Tox). In all of
these cases, the key contribution of systems biology would
be a comprehensive blueprint of cellular pathways used
for identifying proteins at key pathway control points, or
proteins for which the predicted perturbation phenotypes
most closely resemble those observed experimentally with
a pharmacologic or toxic agent.

Looking toward higher levels of living systems behav-
ioral hierarchy, students preparing for research careers in
integrative systems physiology should build a strong foun-
dation in core life sciences, mathematics and engineer-
ing. It is particularly useful to be immersed in life sci-
ences courses which present biological principles in the
context of mathematical models and engineering method-

ologies. An example of such a course is the year-long
course entitled “Physiological Foundations of Biomedi-
cal Engineering” offered at the Johns Hopkins University.
Foundation courses in mathematics could include ordinary
and partial differential equation theory as well as prob-
ability theory and stochastic processes. While not com-
monly available, introductory course work in nonlinear dy-
namical systems theory would be valuable. Students may
also opt to build a strong foundation in a core engineer-
ing discipline such as mechanical, chemical or electrical
engineering.

Students pursuing any aspect of computational or sys-
tems biology at the graduate level face the hard fact that
they must be as deeply educated in relevant areas of the life
sciences as their biological colleagues, and they must be as
strong in appropriate areas of engineering and mathematics
as their colleagues in traditional areas of engineering and
mathematics. Students will only be successful in this en-
deavor if they have a true love for both their chosen areas
of biology and math/engineering concentration. The broad
discipline of quantitative modeling of biological systems
is one that is developing rapidly and is seeing increased
representation in bio- and biomedical engineering depart-
ments, life sciences departments and traditional engineering
departments. Students may therefore undertake combined
experimental and modeling research or modeling research
conducted in collaboration with experimental investigators
with reasonable confidence that they will be able to find an
academic department which appreciates and supports the
particular balance they have chosen between modeling and
experimentation

The discipline of computational medicine poses exciting
new educational prospects that have yet to be tapped. Bio-
and biomedical engineering is seeing increased popularity
as the chosen research discipline of students in Medical Sci-
entist Training Programs. At the Johns Hopkins University
School of Medicine, several graduating medical students
each year choose to delay entry into residency programs in
order to pursue a year of research. This presents an ideal
opportunity for these students to receive focused, in-depth
training in quantitative aspects of integrative systems phys-
iology, so that they may then bring these methods to their
area of clinical interest.

CONCLUDING NOTE

In our view, Bioengineering is an ideal discipline for
address of questions posed in the realm Systems Biology,
well-suited to contribute experimental measurement and
manipulation techniques along with computational min-
ing and modeling methods, which taken all together can
generate and test hypotheses in multivariate, dynamic, and
quantitative manner. We anticipate that in this way, Bio-
engineering can have a major impact on basic understand-
ing of living systems in terms of underlying, complex
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molecular mechanisms, and on generating significant ad-
vances in diagnosis, treatment, and prevention of human
disease.
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