THERMODYNAMIC POTENTIALS

Thermodynamic potentials are state
functions that, together with the
corresponding equations of state, describe
the equilibrium behavior of a system as a
function of so-called "natural variables”. The
natural variables are a set of appropriate
variables that allow to compute other state
functions by partial differentiation of the
thermodynamic potentials.



INTERNAL ENERGY U

The basic relation of thermodynamies is given by the equation

dU = TdS + Y Fidg; + Y p;dN; | (5.1)
i=1 j=1

where { F, ¢} denote the set of conjugate intensive and extensive variables that characterize
a system. For instance, for a gas

{F.q} = {-P,V},

for a magnetic system

(F,q} — {B. M}.

In (5.1), N is the number of particles in the system (an extensive variable); the index j
(j = 1.....a) denotes different sets of particles that may constitute the system.
Chemical potential p (an intensive wvariable): is defined as the energy needed to add a
particle to a thermally and mechanically isolated system.

The last term in eq. (5.1}, pdN, is needed if the number of particles in the system is not
kept constant, i.e. if particles enter or leave the svstem.

For a gas, eq. (5.1) is written as

dU = TdS — PdV + 3 " pi;dN;,

j=1
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one obtains thermal and caloric equations of state:
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Maxwell relations
A Mazwell relation follows from the differentiability of U/:
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we can write eq. (5.4) as .
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U(s.v) =06 () " (55)
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ﬁﬂlmm. Eq (5.5] is the fundamental equation for the ideal gas, with v(s, V) as the
. lic potential and S,V as independent natural variables.

Corollary: the natural variables for {7 are S and V, which means that if the function

U(SVjihknuwnfmaglmsystmnw&ﬁaﬂnﬁ&lﬂaﬂtbﬂthermﬁd}fﬂﬂﬂﬂﬁprﬁpﬂtﬂﬂsﬂf;

the system through the differentiation of U(S, V).

U=U(T.V,N) (5.6)
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U is not an appropriate t.hermbdynﬂ.tnm potential any more smm from the first derivatives
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it becomes clear that

is also a thermodynamic potential.

Note the analogy between classical iics and thermodynamics:

Viz,y z) U(S,V.N)
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Dependent variables Fr=we=—,..




LEGENDRE TRANSFORMATION

A disadvantage of using {/(5.V, N) as a thermodynamic potential is that the natural
variable § is difficult to control in the lab. For practical purposes, it is more convenient
to deal with other thermodynamic potentials that can be defined by making use of the
Legendre transformation.

A thermodynamic potential for a system with variable nnmber of particles should depend
on {p. N} as well as a thermal variable and a mechanical variable, which can be (for a

gas):

thermal: S (extensive) T(intensive)

mechanical: V' (extensive) P (intensive)




HELMHOLTZ FREE ENERGY

There are four possible combinations of these variables:

Intensive variables Extensive variables

e ExtHALPY H(S, P) i
1 +

(GIBBS ENTHALPY INTERNAL ENERGY
G(T, P) (s, V)

1
— FREE ENERGY F(T,V) i

Legendre transformation (Reminder):
Consider a function f = f(x) with the differential

df
af = ach = udz.

l
We want to find a function g = g(u) such that

dg
du

+:r.

Function g{u) can be found in the following way:



Consider a function f = f(z) with the differential w. \\\1

N

l\\

| i

df =%dﬂ: e

We want to find a function g = g(u) such that

Function g(u) can be found in the following way:
df = udz = d(ur) - adu

= d{.f = H-'E} = —xdu

= %{f = Hﬂ} = =.

o) = 1) = v = 1(2) -
s the Legendre transformation of f(z).




HELMHOLTZ FREE ENERGY

By replacing the independent variable S by T in [7{S. V, N). we define the free energy F:

F-v-5(55) -

F=F(T,V,N)| — Free energy.
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dF = =54T - PdV +E 1N |
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The natural variables of thﬂﬁ'ﬂé energy are {T,V,N}. The dependent variables are
obtained out of the first derivatives:
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' is obtained when we substitute the variable V' by P in U(S,V, N):
r' Jr'rr.;'lr.-_ |H:U+PV|‘
/ f; /// The total differential of H is derived as follows.
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dH = dU +d(PV) = dU+1n’dP+P~ﬂV
— TdS—PdV+Y p;dN;+ VdP + PdV =

=1

T

_ - _
= |dH =TdS+VdP+_ p;dN;

The natural variables of the enthalpy are {5, P, N}. Out of the first order derivatives we
obtain (
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and the Maxwell relation




GIBBS ENTHALPY

G=G(T,P,N)
by replacing § by T and V' by P in U(S,V.N):
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G=U-TS+PV|]

The total differential of the Gibbs enthalpy:

=

dG = dll = TdS — SdT + PdV + VdP,

dG = FdS — PV + Y j1;dN; — FdS — SdT + BV + VdP,

i=1

dG = —SdT + VdP + Y0, pdN; |

Out of the first derivatives of 7. we obtain
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and the Masowell relation






