<u>CHE 362</u>

OPTIMIZATION WITH MATLAB

INTRODUCTION:

There are three main toolboxes which are generally used for optimization purposes in MATLAB;

1. Curve fitting toolbox

Graphical tools and command-line functions for fitting curves and surfaces from data are available in Curve Fitting Toolbox. We can perform exploratory data analysis using this toolbox. Pre-processing and post-processing of data, comparing candidate models, and removing outliers are possible using this toolbox. The inbuilt library of linear and nonlinear models can be used to conduct regression analysis. We can also specify our customized model equations. The library provides us the starting conditions and optimized solver parameters to enhance the quality of our results. The nonparametric modeling techniques like splines, interpolation, and smoothing are also possible with this toolbox.

2. Global optimization toolbox

Global Optimization Toolbox provides techniques, which search for global solutions to problems that have multiple stationary points. We can employ these solvers to optimize problems where the objective or constraint functions are continuous, discontinuous, stochastic, or even does not possess derivatives.

3. Optimization toolbox

Optimization Toolbox comprises algorithms for standard and large-scale optimization. These algorithms solve unconstrained and constrained continuous and discrete problems. This toolbox comprises functions for linear programming, quadratic programming, nonlinear optimization, nonlinear least squares, solving systems of nonlinear equations, binary integer programming, and multi-objective optimization.

Function	Description		
Curve fitting toolbox			
cftool	Open Curve Fitting Tool		
fit	Fit model to data		
sftool	Open Surface Fitting Tool		
Optimization toolbox			
bintprog	Solve binary integer programming problems		

Table 1: Description	of MATLAB	function used	l for o	optimization
----------------------	-----------	---------------	---------	--------------

fminbnd	Find minimum of single-variable function on fixed interval			
fgoalattain	Solve multiobjective goal attainment problems			
Fmincon	Find minimum of constrained nonlinear multivariable function			
Fminimax	Solve minimax constraint problem			
fminsearch	Find minimum of unconstrained multivariable function using derivative-free			
fminunc	Find minimum of unconstrained multivariable function			
linprog	Solve linear programming problems			
Global Optimization problem				
ga	Find minimum of function using genetic algorithm			
Gamultiobj	Find minima of multiple functions using genetic algorithm			
patternsearch	Find minimum of function using pattern search			
simulannealbnd	Find unconstrained or bound-constrained minimum of function of several			

Example 1: Write the MATLAB code for solving the problem given below;

Minimize 31 - 11x1 - 5x2 + 3x1 + x2

Solution

The function "fminunc" is used for solving unconstrained multivariable optimization problem.

Follow the steps given below;

Step 1: Create an M file

function f = myfun(x)

 $f = 31-11^*x(1)-5^*x(2) + 3^*x(1)^2 + x(2)^2;$

Step 2: Save this file with file name "myfun"

Step 3: Write the code to optimized the problem using a guess starting point/initial value of x1=1 and x2=1. Note that we have only two variables x1 and x2

x0 = [1,1]; [x,fval] = fminunc(@myfun,x0); x,fval

Note: The above command will be written on the command window

Step 4: Run the programme

The result is x =

1.8333 2.5000

Example 2: Solve the optimization problem with constraints;

Minimize $31 - 11x_1 - 5x_2 + 3x_1 + x_2$ subject to $x_1 + x_2 \le 3$

Solution:

 $x_1^2 + x_2^2 = 8$

Step 1: Create a M file for the objective function (objfun.m):

function f = objfun(x)

 $f = 31-11*x(1)-5*x(2) + 3*x(1)^{2} + x(2)^{2};$

Step 2: Create another M file for the constraint functions (confun.m):

function [c, ceq] = confun(x)

% Nonlinear inequality constraints

c = x(1)+x(2)-3;

% Nonlinear equality constraints

 $ceq = x(1)^{2}+x(2)^{2}-8;$

Step 3: Invoke constrained optimization routine:

```
x0 = [1,1]; % Make a starting guess at the solution
options = optimset('Algorithm','active-set');
fmincon(@objfun, x0, [], [], [], [], [], @confun, options);
[x,fval]
which gives the result:
Ans =
1.8333 2.5000 14.6667
i.e
```

x1, x2 and Minimum function

