
Fundamental of Assembly Language

Instructions

An instruction is a statement that becomes executable when a program is assembled.

Instructions are translated by the assembler into machine language bytes, which are loaded

and executed by the CPU at runtime. An instruction contains four basic parts:

•Label (optional)

•Instruction mnemonic (required)

• Operand(s) (usually required)

• Comment (optional)

This is the basic syntax:

[label:] mnemonic [operands] [;comment]

Label

A label is an identifier that acts as a place marker for instructions and data. A label placed

just before an instruction implies the instruction’s address. Similarly, a label placed just

before a variable implies the variable’s address.

Data Label: A data label identifies the location of a variable, providing a convenient way to

reference the variable in code. The following, for example, defines a variable named count:

count DWORD 100

The assembler assigns a numeric address to each label. It is possible to define multiple data

items following a label. In the following example, array defines the location of the first

number (1024). The other numbers following in memory immediately afterward:

array DWORD 1024, 2048

 DWORD 4096, 8192; address is 4096 and number store on the address is 8192

Code Label: A label in the code area of a program (where instructions are located) must end

with a colon (:) character. Code labels are used as targets of jumping and looping

instructions. For example, the following JMP (jump) instruction transfers control to the

location marked by the label named target, creating a loop:

target:

mov ax,bx

...

jmp target

Label names are created using the rules for identifiers one can use the same code label more

than once in a program as long as each label is unique within its enclosing procedure. (A

procedure is like a function.)

Instruction Mnemonic

An instruction mnemonic is a short word that identifies an instruction. In English, a

mnemonic is a device that assists memory. Similarly, assembly language instruction

mnemonics such as mov, add, and sub provide hints about the type of operation they perform.

Following are examples of instruction mnemonics:

mov: Move (assign) one value to another

add: Add two values

sub: Subtract one value from another

mul: Multiply two values

jmp: Jump to a new location

call: Call a procedure

Operands

 Assembly language instructions can have between zero and three operands, each of which

can be a register, memory operand, constant expression, or input-output port. A memory

operand is specified by the name of a variable or by one or more registers containing the

address of a variable. A variable name implies the address of the variable and instructs the

computer to reference the contents of memory at the given address. Following are examples

of assembly language instructions having varying numbers of operands.

The STC and NOP instruction, for example, has no operands:

stc ; set Carry flag and

NOP; no operation

The INC instruction has one operand:

inc eax ; add 1 to EAX

The MOV instruction has two operands:

mov count,ebx ; move EBX to count

In a two-operand instruction, the first operand is called the destination. The second operand is

the source. In general, the contents of the destination operand are modified by the instruction.

In a MOV instruction, for example, data is copied from the source to the destination.

The IMUL instruction has 3 operands, in which the first operand is the destination, and the

following 2 operands are source operands:

imul eax,ebx,5

In this case, EBX is multiplied by 5, and the product is stored in the EAX register.

Comments

Comments are an important way for the writer of a program to communicate information

about the program’s design to a person reading the source code. The following information is

typically included at the top of a program listing:

• Description of the program’s purpose

• Names of persons who created and/or revised the program

• Program creation and revision dates

• Technical notes about the program’s implementation

Comments can be specified in two ways:

Single-line comments, beginning with a semicolon character (;). All characters following the

semicolon on the same line are ignored by the assembler.

Mov eax, 5; I am a comment.

Block comments, beginning with the COMMENT directive and a user-specified symbol. All

subsequent lines of text are ignored by the assembler until the same user-specified symbol

appears. For example,

COMMENT !

This line is a comment.

This line is also a comment.

!

other symbol can be used:

COMMENT &

This line is a comment.

This line is also a comment.

&

The NOP (No Operation) Instruction

The safest (and the most useless) instruction you can write is called NOP (no operation). It

takes up 1 byte of program storage and doesn’t do any work. It is sometimes used by

compilers and assemblers to align code to even-address boundaries. In the following

example, the first MOV instruction generates three machine code bytes. The NOP instruction

aligns the address of the third instruction to a doubleword boundary x86 processors are

designed to load code and data more quickly from even doubleword addresses.

00000000 66 8B C3 mov ax,bx

00000003 90 nop ; align next instruction

00000004 8B D1 mov edx,ecx

Example: Adding and Subtracting Integers

This section introduces a short assembly language program that adds and subtracts integers.

Registers are used to hold the intermediate data, and we call a library subroutine to display

the contents of the registers on the screen. Here is the program source code:

TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc

code

main PROC

mov eax,10000h ; EAX = 10000h

add eax,40000h ; EAX = 50000h

sub eax,20000h ; EAX = 30000h

call DumpRegs ; display registers

exit

main ENDP

Let’s go through the program line by line. Each line of program code will appear before its

explanation.

TITLE Add and Subtract (AddSub.asm)

The TITLE directive marks the entire line as a comment. anything you want can be put on

this line.

; This program adds and subtracts 32-bit integers.

All text to the right of a semicolon is ignored by the assembler, so we use it for comments.

INCLUDE Irvine32.inc

The INCLUDE directive copies necessary definitions and setup information from a text file

named Irvine32.inc, located in the assembler’s INCLUDE directory.

.code

The .code directive marks the beginning of the code segment, where all executable statements

in a program are located.

main PROC

The PROC directive identifies the beginning of a procedure. The name chosen for the only

procedure in our program is main.

mov eax,10000h ; EAX = 10000h

The MOV instruction moves (copies) the integer 10000h to the EAX register. The first

operand (EAX) is called the destination operand, and the second operand is called the source

operand.

The comment on the right side shows the expected new value in the EAX register.

add eax,40000h ; EAX = 50000h

The ADD instruction adds 40000h to the EAX register. The comment shows the expected

new value in EAX.

sub eax,20000h ; EAX = 30000h

The SUB instruction subtracts 20000h from the EAX register.

call DumpRegs ; display registers

The CALL statement calls a procedure that displays the current values of the CPU registers.

This can be a useful way to verify that a program is working correctly.

exit

main ENDP

The exit statement (indirectly) calls a predefined MS-Windows function that halts the

program.

The ENDP directive marks the end of the main procedure. Note that exit is not a MASM

keyword; instead, it’s a macro command defined in the Irvine32.inc include file that provides

a simple way to end a program.

END main

The END directive marks the last line of the program to be assembled. It identifies the name

of the program’s startup procedure (the procedure that starts the program execution).

Program Output The following is a snapshot of the program’s output, generated by the call

to DumpRegs:

Program Template

Assembly language programs have a simple structure, with small variations. To begin a new

program, start with an empty shell program with all basic elements in place. One can avoid

redundant typing by filling in the missing parts and saving the file under a new name.

The following protected-mode program (Template.asm) can easily be customized. Note that

comments have been inserted, marking the points where your own code should be added:

TITLE Program Template (Template.asm)

; Program Description:

; Author:

; Creation Date:

; Revisions:

; Date:

INCLUDE Irvine32.inc

.data

; (insert variables here)

.code

main PROC

; (insert executable instructions here)

exit

main ENDP

; (insert additional procedures here)

END main

Assembling, Linking, and Running Programs

A source program written in assembly language cannot be executed directly on its target

computer. It must be translated, or assembled into executable code. In fact, an assembler is

very similar to a compiler, the type of program you would use to translate a C++ or Java

program into executable code. The assembler produces a file containing machine language

called an object file. This file isn’t quite ready to execute. It must be passed to another

program called a linker, which in turn an executable file. This file is ready to execute from

the MS-DOS/Windows command prompt.

The Assemble-Link-Execute Cycle

The process of editing, assembling, linking, and executing assembly language programs is

summarized in above. Following is a detailed description of each step.

Step 1: A programmer uses a text editor to create an ASCII text file named the source file.

Step 2: The assembler reads the source file and produces an object file, a machine-language

translation of the program. Optionally, it produces a listing file. If any errors occur, the

programmer must return to Step 1 and fix the program.

Step 3: The linker reads the object file and checks to see if the program contains any calls to

procedures in a link library. The linker copies any required procedures from the link library,

combines them with the object file, and produces the executable file.

Step 4: The operating system loader utility reads the executable file into memory and

branches the CPU to the program’s starting address, and the program begins to execute.

