
Defining Data in Assembly Language 

Data Types 

Assembly language defines intrinsic data types, each of which describes a set of values that 

can be assigned to variables and expressions of the given type. The essential characteristic of 

each type is its size in bits: 8, 16, 32, 48, 64, and 80. Other characteristics (such as signed, 

pointer, or floating-point) are optional and are mainly for the benefit of programmers who 

want to be reminded about the type of data held in the variable. A variable declared as 

DWORD, for example, logically holds an unsigned 32-bit integer. In fact, it could hold a 

signed 32-bit integer, a 32-bit single precision real, or a 32-bit pointer. The assembler is not 

case sensitive, so a directive such as DWORD can be written as dword, Dword, dWord, and 

so on. 

 

Data Definition Statement 

A data definition statement sets aside storage in memory for a variable, with an optional 

name. Data definition statements create variables based on intrinsic data types such as BYTE, 

WORD, DWORD SBYTE, SWORD etc. A data definition has the following syntax: 

 

[name] directive initializer [,initializer] 

This is an example of a data definition statement: 

count DWORD 12345 

Name: The optional name assigned to a variable must conform to the rules for identifiers 

Directive: The directive in a data definition statement can be BYTE, WORD, DWORD, 

SBYTE, SWORD, or any other types. 

Initializer: At least one initializer is required in a data definition, even if it is zero. Additional 

initializers, if any, are separated by commas. For integer data types, initializer is an integer 

constant or expression matching the size of the variable’s type, such as BYTE or WORD. If 

one prefer to leave the variable uninitialized (assigned a random value), the ? symbol can be 

used as the initializer. All initializers, regardless of their format, are converted to binary data 

by the assembler. Initializers such as 00110010b, 32h, and 50d all end up being having the 

same binary value. 

 

Defining BYTE and SBYTE Data 

The BYTE (define byte) and SBYTE (define signed byte) directives allocate storage for one 

or more unsigned or signed values. Each initializer must fit into 8 bits of storage. For 

example, 

value1 BYTE 'A' ; character constant 

value2 BYTE 0 ; smallest unsigned byte 

value3 BYTE 255 ; largest unsigned byte 

value4 SBYTE -128 ; smallest signed byte 

value5 SBYTE +127 ; largest signed byte 

A question mark (?) initializer leaves the variable uninitialized, implying it will be assigned a 

value at runtime: 

value6 BYTE ? 

 



Multiple Initializers 

If multiple initializers are used in the same data definition, its label refers only to the offset of 

the first initializer. In the following example, assume list is located at offset 0000. If so, the 

value 10 is at offset 0000, 20 is at offset 0001, 30 is at offset 0002, and 40 is at offset 0003: 

list BYTE 10,20,30,40 

 

 
Within a single data definition, its initializers can use different radixes. Character and string 

constants can be freely mixed. In the following example, list1 and list2 have the same 

contents: 

list1 BYTE 10, 32, 41h, 00100010b 

list2 BYTE 0Ah, 20h, 'A', 22h 

Defining Strings 

To define a string of characters, enclose them in single or double quotation marks. The most 

common type of string ends with a null byte (containing 0). Called a null-terminated string, 

strings of this type are used in many programming languages: 

greeting1 BYTE "Good afternoon",0 

greeting2 BYTE 'Good night',0 

Strings are an exception to the rule that byte values must be separated by commas. Without 

that exception, greeting1 would have to be defined as greeting1 BYTE 

'G','o','o','d'....etc. which would be exceedingly tedious. A string can be divided 

between multiple lines without having to supply a label for each line: 

greeting1 BYTE "Welcome to the Encryption Demo program " 

BYTE "created by Kip Irvine.",0dh,0ah 

BYTE "If you wish to modify this program, please " 

BYTE "send me a copy.",0dh,0ah,0 

The hexadecimal codes 0Dh and 0Ah are alternately called CR/LF (carriage-return line-feed) 

or end-of-line characters. When written to standard output, they move the cursor to the left 

column of the line following the current line. The line continuation character (\) concatenates 

two source code lines into a single statement. It must be the last character on the line. The 

following statements are equivalent: 

greeting1 BYTE "Welcome to the Encryption Demo program " 

and 

greeting1 \ 

BYTE "Welcome to the Encryption Demo program " 



DUP Operator 

The DUP operator allocates storage for multiple data items, using a constant expression as a 

counter. It is particularly useful when allocating space for a string or array, and can be used 

with initialized or uninitialized data: 

BYTE 20 DUP(0) ; 20 bytes, all equal to zero 

BYTE 20 DUP(?) ; 20 bytes, uninitialized 

BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK" 

 

Example 2 

TITLE Add and Subtract, Version 2 (AddSub2.asm) 

; This program adds and subtracts 32-bit unsigned 

; integers and stores the sum in a variable. 

INCLUDE Irvine32.inc 

.data 

val1 DWORD 10000h 

val2 DWORD 40000h 

val3 DWORD 20000h 

finalVal DWORD ? 

.code 

main PROC 

mov eax,val1 ; start with 10000h 

add eax,val2 ; add 40000h 

sub eax,val3 ; subtract 20000h 

mov finalVal,eax ; store the result (30000h) 

call DumpRegs ; display the registers 

exit 

main ENDP 

END main 

How does it work? First, the integer in val1 is moved to EAX: 

mov eax,val1 ; start with 10000h 

Next, val2 is added to EAX: 

add eax,val2 ; add 40000h 

Next, val3 is subtracted from EAX: 

sub eax,val3 ; subtract 20000h 

EAX is copied to finalVal: 

mov finalVal,eax ; store the result (30000h) 

 

Defining WORD and SWORD Data 

The WORD (define word) and SWORD (define signed word) directives create storage for 

one or more 16-bit integers: 

word1 WORD 65535 ; largest unsigned value 

word2 SWORD -32768 ; smallest signed value 

word3 WORD ? ; uninitialized, unsigned 

Alternatively the  DW directive can also be used: 



val1 DW 65535 ; unsigned 

val2 DW -32768 ; signed 

 

EQU and TEXTEQU Directives 

EQU Directive 

The EQU directive associates a symbolic name with an integer expression or some arbitrary 

text. There are three formats: 

name EQU expression 

name EQU symbol 

name EQU <text> 

In the first format, expression must be a valid integer expression. In the second format, 

symbol is an existing symbol name, already defined with = or EQU. In the third format, any 

text may appear within the brackets <. . .>. When the assembler encounters name later in the 

program, it substitutes the integer value or text for the symbol. For example, can be defined 

using EQU: 

PI EQU <3.1416> 

pressKey EQU <"Press any key to continue...",0> which is invoke 

below; 

.data 

prompt BYTE pressKey 

 

TEXTEQU Directive 

The TEXTEQU directive, similar to EQU, creates what is known as a text macro. There are 

three different formats: the first assigns text, the second assigns the contents of an existing 

text macro, and the third assigns a constant integer expression: 

name TEXTEQU <text> 

name TEXTEQU textmacro 

name TEXTEQU %constExpr 

For example, the prompt1 variable uses the continueMsg text macro: 

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?"> 

.data 

prompt1 BYTE continueMsg 

Text macros can build on each other. In the next example, count is set to the value of an 

integer expression involving rowSize. Then the symbol move is defined as mov. Finally, 

setupAL is built from move and count: 

rowSize = 5 

count TEXTEQU %(rowSize * 2) 

move TEXTEQU <mov> 

setupAL TEXTEQU <move al,count> 

Therefore, the statement setupAL would be assembled as mov al,10. A symbol defined by 

TEXTEQU can be redefined at any time. 

 

 

 



 

Example 3 (AddSub3) 

The following program implements various arithmetic expressions using the ADD, SUB, 

INC, DEC, and NEG instructions, and shows how certain status flags are affected: 

 

TITLE Addition and Subtraction (AddSub3.asm) 

INCLUDE Irvine32.inc 

.data 

Rval SDWORD ? 

Xval SDWORD 26 

Yval SDWORD 30 

Zval SDWORD 40 

.code 

main PROC 

; INC and DEC 

mov ax,1000h 

inc ax ; 1001h 

dec ax ; 1000h 

; Expression: Rval = -Xval + (Yval - Zval) 

mov eax,Xval 

neg eax ; -26 

mov ebx,Yval 

sub ebx,Zval ; -10 

add eax,ebx 

mov Rval,eax ; -36 

; Zero flag example: 

mov cx,1 

sub cx,1 ; ZF = 1 

mov ax,0FFFFh 

inc ax ; ZF = 1 

; Sign flag example: 

mov cx,0 

sub cx,1 ; SF = 1 

mov ax,7FFFh 

add ax,2 ; SF = 1 

; Carry flag example: 

mov al,0FFh 

add al,1 ; CF = 1, AL = 00 

; Overflow flag example: 

mov al,+127 

add al,1 ; OF = 1 

mov al,-128 

sub al,1 ; OF = 1 

exit 



main ENDP 

END main 

JMP and LOOP Instructions 

By default, the CPU loads and executes programs sequentially. But the current instruction 

might be conditional, meaning that it transfers control to a new location in the program based 

on the values of CPU status flags (Zero, Sign, Carry, etc.). Assembly language programs use 

conditional instructions to implement high-level statements such as IF statements and loops. 

Each of the conditional statements involves a possible transfer of control (jump) to a different 

memory address. A transfer of control, or branch, is a way of altering the order in which 

statements are executed. There are two basic types of transfers: 

• Unconditional Transfer: Control is transferred to a new location in all cases; a new 

address is loaded into the instruction pointer, causing execution to continue at the new 

address. The JMP instruction does this. 

• Conditional Transfer: The program branches if a certain condition is true. A wide variety 

of conditional transfer instructions can be combined to create conditional logic structures. 

The CPU interprets true/false conditions based on the contents of the ECX and Flags 

registers. 

JMP Instruction 

The JMP instruction causes an unconditional transfer to a destination, identified by a code 

label that is translated by the assembler into an offset. The syntax is 

JMP destination 

When the CPU executes an unconditional transfer, the offset of destination is moved into the 

instruction pointer, causing execution to continue at the new location. 

Creating a Loop: The JMP instruction provides an easy way to create a loop by jumping to a 

label at the top of the loop: 

top: 

; instructions 

; instructions 

. 

. 

jmp top ; repeat the endless loop 

JMP is unconditional, so a loop like this will continue endlessly unless another way is found 

to exit the loop. 

 

LOOP Instruction 

The LOOP instruction, formally known as Loop According to ECX Counter, repeats a block 

of statements a specific number of times. ECX is automatically used as a counter and is 

decremented each time the loop repeats. Its syntax is 

LOOP destination 

The execution of the LOOP instruction involves two steps: First, it subtracts 1 from ECX. 

Next, it compares ECX to zero. If ECX is not equal to zero, a jump is taken to the label 

identified by destination. Otherwise, if ECX equals zero, no jump takes place, and control 

passes to the instruction following the loop. In the following example, we add 1 to AX each 

time the loop repeats. When the loop ends, 



AX =5 and ECX = 0: 

mov ax,0 

mov ecx,5 

L1: 

inc ax; increase content of ax by 1 

loop L1 

Rarely should one explicitly modify ECX inside a loop. If one do, the LOOP instruction may 

not work as expected. 

 

Nested Loops: When creating a loop inside another loop, special consideration must be 

given to the outer loop counter in ECX. Instead save it in a variable: 

.data 

count DWORD ? 

.code 

mov ecx,100 ; set outer loop count 

L1: 

mov count,ecx ; save outer loop count 

mov ecx,20 ; set inner loop count 

L2: 

. 

. 

loop L2 ; repeat the inner loop for 20times 

mov ecx,count ; restore outer loop count i.e 100 times 

loop L1 ; repeat the outer loop 

 

     Arrays 

In assembly language, you would follow these steps in working with an array variable: 

1. Assign the array’s address to a register that will serve as an indexed operand. 

2. Initialize the loop counter to the length of the array. 

3. Assign zero to the register that accumulates the sum. 

4. Create a label to mark the beginning of the loop. 

5. In the loop body, add a single array element to the sum. 

6. Point to the next array element. 

7. Use a LOOP instruction to repeat the loop. 

Steps 1 through 3 may be performed in any order. Here’s a short program that sums an array 

of 16-bit integers. 

 

TITLE Summing an Array (SumArray.asm) 

INCLUDE Irvine32.inc 

.data 

intarray DWORD 10000h,20000h,30000h,40000h 

.code 

main PROC 

mov edi,OFFSET intarray ; 1: EDI = address of intarray 



mov ecx,LENGTHOF intarray ; 2: initialize loop counter 

mov eax,0 ; 3: sum = 0 

L1: ; 4: mark beginning of loop 

add eax,[edi] ; 5: add an integer 

add edi,TYPE intarray ; 6: point to next element 

loop L1 ; 7: repeat until ECX = 0 

exit 

main ENDP 

END main 


