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EXAMPLE |1
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For a short time, the path of the plane in Fig. 12-19a is described by
y = (0.001x%) m. If the plane is rising with a constant velocity of 10m/s,
determine the magnitudes of the velocity and acceleration of the plane
whenitisaty = 100m.

SOLUTION
When y = 100m, then 100 = 0.001x> or x = 3162m. Also, since
v, = 10m/s, then

y=op 100m = (10m/s) ¢ t=10s

Velocity. Using the chain rule (sce Appendix C) to find the
relationship between the velocity components, we have

v,

=9 = %(0.001%) = (0.002x)% = 0.002xv, )

Thus

10m/s = 0.002(316.2 m)(v,)
o, = 1581 m/s

The magnitude of the velocity is therefore

v =\/02 +v2 =\/(1581m/s)? + (10m/s)® = 187m/s  Ans

Acceleration. Using the chain rule, the time derivative of Eq. (1)
gives the relation between the acceleration components.

a, = b, = 0.002xv, + 0.002x0, = 0.002(v} + xa)
When x = 3162m, v, = 1581 m/s. b, = a, = 0,

0 = 0.002((15.81 m/s)> + 3162 m(ay))
a, = —0.791 m/s*

The magnitude of the plane’s acceleration is therefore

a=\/da; +a} =\/(-0.791 m/s*)* + (0 m/s*)?
=0.791 m/s* Ans.

These results are shown in Fig, 12-19b.
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12.4 General Curvilinear Motion

Curvilinear motion occurs when a particle moves along a curved path.
Since this path is often described in three dimensions, vector analysis will
be used to formulate the particle’s position, velocity, and acceleration.*
In this section the general aspects of curvilinear motion are discussed, and
in subsequent sections we will consider three types of coordinate systems
often used to analyze this motion.

Position. Consider a particle located at a point on a space curve
defined by the path function (1), Fig. 12-16a. The position of the particle,
measured from a fixed point O, will be designated by the position vector
r = r(r). Notice that both the magnitude and direction of this vector will
change as the particle moves along the curve.

Displacement. Suppose that during a small time interval At the
particle moves a distance As along the curve to a new position, defined
byr' =r + Ar, Fig. 12-16b. The displacement Ar represents the change
in the particle’s position and is determined by vector subtraction; i.c.,
Ar=r' -1

Velocity. During the time At, the average velocity of the particle is

_Ar
v T Ay
The instantaneous velocity is determined from this equation by letting
At— 0, and consequently the direction of Ar approaches the tangent to
the curve. Hence, v = lim (Ar/Ar) or
e

_ar

v =
dt

(12-7)

Since dr will be tangent to the curve, the direction of v is also tangent to
the curve, Fig. 12-16c. The magnitude of v, which is called the speed. is
obtained by realizing that the length of the straight line segment Ar in
Fig. 12-16b approaches the arc length As as Ar—0, we have
v = lim (Ar/Ar) = lim (As/Ar), or

_ds

T

(12-8)

Thus, the speed can be obtained by differentiating the path function s
with respect to time.
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Acceleration. If the particle has a velocity v at time f and a velocity
v/ =v+ Avatt + Az, Fig. 12-16d. then the average acceleration of the

particle during the time interval At is

where Av " — v. To study this time rate of change, the two veloci
vectors in Fig, 12-16d are plotted in Fig. 12-16e such that their tails are
located at the fixed point O" and their arrowheads touch points on a
curve. This curve is called a hodograph, and when constructed, it
describes the locus of points for the arrowhead of the velocity vector in
the same manner as the path s describes the locus of points for the
arrowhead of the position vector, Fig. 12-16a.

To obtain the instantaneous acceleration, let At — 0 in the above
equation. In the limit Av will approach the tangent to the hodograph, and
soa = lim (Av/Af), or

a=2 (12-9)

By definition of the derivative, a acts fangent fo the hodograph,
Fig. 12-16f, and, in general it is not tangent o the path of motion,
Fig. 12-16g. To clarify this point, realize that Av and consequently a
must account for the change made in both the magnitude and direction
of the velocity v as the particle moves from one point to the next along
the path, Fig. 12-16d. However, in order for the particle to follow any
curved path, the directional change always “swings” the velocity vector
toward the “inside” or “concave side” of the path, and therefore a
cannot remain tangent to the path. In summary, v is always tangent to
the path and a is always tangent to the hodograph.
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Fig. 12-16 (cont.)
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12.5 Curvilinear Motion: Rectangular
Components

Occasionally the motion of a particle can best be described along a path
that can be expressed in terms of its x, y;  coordinates.

Position. If the particle is at point (x, y, 7) on the curved path s shown
in Fig. 12-17a, then its location is defined by the position vector

r=axi+yj+zk (12-10)

When the particle moves, the x, y, z components of r will be functions of
time;ie.,x = x(t),y = y(t), z = z(t),so that r = r(z).
At any instant the magnitude of r is defined from Eq. C-3 in

Appendix Cas
r=\/x +y +2

And the direction of r is specified by the unit vector u,

/r.

Velocity. The first time derivative of r yields the velocity of the
particle. Hence,

d d
=—=—(xi) + (i) + (kK
v () + - (00) + 57 (2k)
When taking this derivative, it is necessary to account for changes in both

the magnitude and direction of each of the vector’s components. For
example, the derivative of the i component of r is

The second term on the right side is zero, provided the x, y, 7 reference
frame is fixed, and therefore the direction (and the magnitude) of i does
not change with time. Differentiation of the j and k components may be
carried out in a similar manner, which yields the final result,

a
v= d—: = ud + vj + vk (12-11)
where
V=% v=§ v=: (12-12)
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The “dot” notation &, j, z represents the first time derivatives of
x = x(t), y = y(t), z = (), respectively.
The velocity has a magnitude that is found from

v=\/v} + v} +}

and a direction that is specified by the unit vector u, = v/v. As discussed
in Sec. 124, this direction is always tangent to the path, as shown in
Fig. 12-17b.

Acceleration. The acceleration of the particle is obtained by taking
the first time derivative of Eq. 12-11 (or the second time derivative of
Eq. 12-10). We have

.
a=r=aitaj+ak (12-13)
where
ax
a, (12-14)
a;

Here @y. ay. @ represent, respectively, the first time derivatives of
Ve = v(t), v, = v(1), v; = v;(t), or the second time derivatives of the
functions x = x(t).y = y(1).z = z(1).

The acceleration has a magnitude

a=\/d; +a, +a

and a direction specified by the unit vector u, = a/a. Since a represents
the time rate of change in both the magnitude and direction of the
velocity, in general a will nor be tangent to the path, Fig, 12-17c.

N

a=ai+ai+ak

Acceleration

(©)

y
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* Curvilinear motion can cause changes in both the magnitude and
direction of the position, velocity, and acceleration vectors.

* The velocity vector is always directed fangent to the path.

© In general, the acceleration vector is not tangent to the path, but
rather, it is tangent to the hodograph.

© If the motion is described using rectangular coordinates, then the
components along each of the axes do not change direction, only
their magnitude and sense (algebraic sign) will change.

* By considering the component motions, the change in magnitude
and direction of the particle’s position and velocity are
automatically taken into account.

Procedure for Analy

Coordinate System.

© A rectangular coordinate system can be used to solve problems
for which the motion can conveniently be expressed in terms of
its x, y, z components.

Kinematic Quantities.

o Since reciilinear motion oceurs along each coordinate axis, the
motion along each axis is found using v = ds/dt and a = dv/dr;
or in cases where the motion is not expressed as a function of
time, the equation a ds = v dv can be used.

* In two dimensions, the equation of the path y = f(x) can be used
to relate the x and y components of velocity and acceleration by
applying the chain rule of calculus. A review of this concept is
given in Appendix C.

 Once the x, y, z components of v and a have been determined, the
magnitudes of these vectors are found from the Pythagorean
theorem, Eq. B-3, and their coordinate direction angles from the
components of their unit vectors, Eqs. B4 and B-5.
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EXAMPLE |1

At any instant the horizontal position of the weather balloon in
Fig. 12-18a is defined by x = (8¢) ft, where 7 is in seconds. If the
equation of the path is y = x%/10, determine the magnitude and
direction of the velocity and the acceleration when ¢ = 2s.

SOLUTION
Velocity. The velocity component in the x direction is

%(&) = 8ft/s—

To find the relationship between the velocity components we will use
the chain rule of calculus. (See Appendix A for a full explanation.)

v, =j= %(xl/lo) = 2xx/10 = 2(16)(8)/10 = 25.6 ft/s |

When ¢ = 25, the magnitude of velocity is therefore

V (81t/s)* + (25.6 ft/s)> = 268 ft/s Ans.

v
The direction is tangent to the path, Fig. 12-18b, where v=2681t/s
v, 6, =726
6, = tan' < = Y Ans. B
o, B
Acceleration. The relationship between the acceleration components (&)

is determined using the chain rule. (See Appendix C.) We have

d
=Z®=0

= %(zxs:/w) = 2(¥)%/10 + 2x(¥)/10

= 2(8)%/10 + 2(16)(0)/10 = 12.8ft/s> T

i a=1284,
a=\/(0)2+ (128)* = 128ft/s* Ans. (=P
B
The direction of a, as shown in Fig. 12-18c, is ©
o
128
6, = tan ‘T =90 Ans. Fig. 12-18

NOTE: It is also possible to obtain v, and a, by first expressing
¥ = f(t) = (8)%/10 = 6.4¢> and then taking successive time derivatives.





