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34.1. Introduction
A structural member, subjected to an axial

compressive force, is called a strut. As per defi-
nition, a strut may be horizontal, inclined or even
vertical. But a vertical strut, used in buildings or
frames, is called a column.

34.2. Failure of a Column or Strut
It has been observed, that when a column or

a strut is subjected to some compressive force,
then the compressive stress induced,

σ =
P
A

where P = Compressive force and

A = Cross-sectional area of the column.

C h a p t e r
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A little consideration will show, that if the force or load is gradually increased the column will
reach a stage, when it will be subjected to the ultimate crushing stress. Beyond this stage, the column
will fail by crushing. The load corresponding to the crushing stress, is called crushing load.

It has also been experienced that sometimes, a compression member does not fail entirely by
crushing, but also by bending i.e., buckling. This happens in the case of long columns. It has also been
observed that all the short columns fail due to their crushing. But, if a long column is subjected to a
compressive load, it is subjected to a compressive stress. If the load is gradually increased, the col-
umn will reach a stage, when it will start buckling. The load, at which the column just buckles is
called buckling load, criticial load or crippling load and the column is said to have developed an
elastic instability. A little consideration will show that for a long column, the value of buckling load
will be less than the crushing load. Moreover, the value of buckling load is low for long columns and
relatively high for short columns.

34.3. Euler’s Column Theory
The first rational attempt, to study the stability of *long columns, was made by Mr. Euler. He

derived an equation, for the buckling load of long columns based on the bending stress. While deriv-
ing this equation, the effect of direct stress is neglected. This may be justified with the statement that
the direct stress induced in a long column is negligible as compared to the bending stress. It may be
noted that the Euler’s formula cannot be used in the case of short columns, because the direct stress is
considerable and hence cannot be neglected.

34.4. Assumptions in the Euler’s Column Theory
The following simplifying assumptions are made in the Euler’s column theory:

1. Initially the column is perfectly straight and the load applied is truly axial.

2. The cross-section of the column is uniform throughout its length.

3. The column material is perfectly elastic, homogeneous and isotropic and thus obeys Hooke’s law.

4. The length of column is very large as compared to its cross-sectional dimensions.

5. The shortening of column, due to direct compression (being very small) is neglected.

6. The failure of column occurs due to buckling alone.

34.5. Sign Conventions
Though there are different signs used for the bending of columns in different books, yet we shall

follow the following sign conventions which are commonly used and internationally recognised.

Fig. 34.1

* As a matter of fact, mere length is not the only criterion for a column to be called long or short. But it has
an important relation with the lateral dimensions of the column.
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1. A moment, which tends to bend the column with convexity towards its initial central line as
shown in Fig. 34.1 (a) is taken as positive.

2. A moment, which tends to bend the column with its concavity towards its initial central line as
shown in Fig. 34.1 (b) is taken as negative.

34.6. Types of End Conditions of Columns
In actual practice, there are a number of end conditions, for columns. But, we shall study the

Euler’s column theory on the following four types of end conditions, which are important from the
subject point of view:

1. Both ends hinged,
2. Both ends fixed,

3. One end is fixed and the other hinged, and

4. One end is fixed and the other free.
Now we shall discuss the value of critical load for all the above mentioned type of and conditions

of columns one by one.

34.7. Columns with Both Ends Hinged
Consider a column AB of length l hinged at both of its ends A and B and

carrying a critical load at B. As a result of loading, let the column deflect into a
curved form AX1B as shown in Fig. 34.2.

Now consider any section X, at a distance x from A.

Let P = Critical load on the column,

y = Deflection of the column at X.

∴ Moment due to the critical load P,

M = – P · y

∴
2

2

d y
EI

dx
= – P · y

∴
2

2
·

d y
EI P y

dx
+ = 0

or
2

2
·

d y P y
EIdx
+ = 0

The general solution of the above differential equation is

y = · cos sinP P
A x B x

EI EI
   

+   
   

where A and B are the constants of integration. We know that when x = 0, y = 0. Therefore A = 0.
Similarly when x = l, then y = 0. Therefore

0 = B sin Pl
EI

 
 
 

... (Minus sign due to
    concavity towards initial
    centre line)

Fig. 34.2
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A little consideration will show that either B is equal to zero or sin Pl
EI

 
 
 

 is equal to zero.

Now if we consider B to be equal to zero, then it indicates that the column has not bent at all. But if

sin Pl
EI

 
 
 

= 0

∴ P
l

EI
= 0 = π = 2π = 3π = .......

Now taking the least significant value,

Pl
EI

= π

or P =
2

2

EI

l

π

34.8. Columns with One End Fixed and the Other Free
Consider a column AB of length l fixed at A and free at B and carrying a critical load at B. As a

result of loading, let the beam deflect into a curved form AX1B1 such that the
free end B deflects through a and occupies a new position B1 as shown in Fig.
34.3.
Now consider any section X at a distance x from A.

Let P = Critical load on the column and

y = Deflection of the column at X.
∴ Moment due to the critical load P,

M = + P (a – y)

= P · a – P · y

∴
2

2

d y
EI

dx
= P · a – P · y

or
2

2 ·
d y P

y
EIdx
+ =

·P a
EI

The general solution of the above differential equation is,

y = A cos sinP Px B x a
EI EI

   
+ +   

   
...(i)

where A and B are the constants of integration.   We know that when x = 0,   then y = 0,   therefore
A = – a.   Now differentiating the above equation,

dy
dx

= sin cosP P P PA x B x
EI EI EI EI

   
− +   

   

We also know that when x = 0, then 
dy
dx

 = 0. Therefore

0 =
PB
EI

... (Plus sign due to
convexity towards
initial centre line)

Fig. 34.3
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A little consideration will show that either B is equal to zero of P
EI

 is equal to zero. Since

the load P is not equal to zero, it is thus opbvious that B is equal to zero. Now substituting the values
A = – a and B = 0 is equation (i),

y = – a cos 1 cosP Px a a x
EI EI

    
+ = −    

    

We also know that when x = l,  then y = a. Therefore

a = 1 cos Pa l
EI

  
−  

  

∴ cos P
l

EI
 
 
 

= 0

or
Pl
EI

=
3 5

2 2 2
π π π= =

Now taking the least significant value,

Pl
EI

=
2
π

∴ P =
2

24

EI

l

π

34.9. Columns with Both Ends Fixed
Consider a column AB of length l fixed at both of its ends A and B and

carrying a critical load at B. As a result of loading, let the column deflect as
shown in Fig. 34.4

Now consider any section X at a distance x from A.
Let P = Critical load on the column and

y = Deflection of the column at X.

A little consideration will show that since both the ends of the beam AB are
fixed and it is carrying a load, therefore there will be some fixed end moments
at A and B.

Let M0 = Fixed end moments at A and B.

∴ Moment due to the critical load P,

M = – P · y

2

2

d y
EI

dx
= M0 – P · y

∴
2

2 ·
d y P y

EIdx
+ = 0M

EI

The general solution of the above differential equation is:

y = 0cos sin
MP P

A x B x
EI EI P

   
+ +   

   
...(i)

...(Minus sign due to concavity
initial centre line)

Fig. 34.4
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where A and B are the constants of integration. We know that when x = 0, then y = 0. Therefore

0M
A

P
= − . Now differentiating the above equation,

dy
dx

= sin cosP P P P
A x B x

EI EI EI EI
   

− +   
   

We also know that when x = 0, then 
dy
dx

 = 0. Therefore

0 =
PB
EI

A little consideration will show, that either B is equal to zero, or
P
EI

 is equal to zero. Since the

load P is not equal to zero, it is thus obvious that B is equal to zero. Substituting the values 0M
A

P
=

and B = 0 in equation (i),

y = 0 0 0cos 1 cos
M M MP Px l
P EI P P EI

    
− + = −    

    
     We also know that when x = l, then y = 0. Therefore

0 = 0 1 cos
M Pl
P EI

  
−  

  

∴ cos P
l

EI
 
 
 

= 1

or
Pl
EI

= 0 = 2π = 4π = 6π = .......

Now taking the least significant value,

Pl
EI

= 2π

∴ P =
2

2

4 EI

l

π

Alternative Methods

1. The fixed beam AB may bne considered as equivalent to a column of length 
2
l

 with both ends

hinged (i.e., middle portion of the column as shown in Fig. 34.4).

∴ Critical load, P =
2 2

2 2

4

2

EI EI

ll

π π=
 
 
 

2. The fixed beam AB may also be considered as equivalent to a column of length 
4
l

 with one end

fixed and the other free (i.e., lower one-fourth portion of the beam as shown in Fig. 34.4).

∴ Critical load, P =
2 2

2 2

4

4
4

EI EI

ll

π π=
 
 
 



Chapter 34 : Columns and Struts � 801

34.10. Columns with One End Fixed and the Other Hinged
Consider a column AB of length l fixed at A and hinged at B and carrying

a critical load at B. As a result of loading, let the column deflect as shown in
Fig. 34.5.

Now consider any section X at a distance x from A.

Let P = Critical load on the column, and

y = Deflection of the beam at X,

A little consideration will show, that since the beam AB is fixed at A and
it is carrying a load, therefore, there will be some fixed end moment at A. In
order to balance the fixing moment at A, there will be a horizontal reaction at
B.

Let MA = Fixed end mement at A and

H = Horizontal reaction at B.
∴ Moment due to critical load P,

M = – P · y

or
2

2
d y

EI
dx

= H (l – x) – P · y

∴
2

2
·

d y P y
EIdx
+ =

( )H l x
EI
−

The general solution of the above differential equation is

A =
( )

cos sin
H l xP P

y x B x
EI EI P

    −+ +   
   

...(i)

where A and B are the constants of integration. We know that when x = 0, they y = 0. Therefore A = 
Hl
P

.

Now differentiating the above equation,

dy
dx

= sin cosP P P P HA x B x
EI EI EI EI P

   
− + −   

   

We know that when x = 0, 
dy
dx

= 0. Therefore

0 =
P HB
EI P
−

∴ B =
P EI
H P
×

We also know that when x = l, then y = 0. Therefore substituting these values of x, A and B is
equation (i),

0 = cos sinHl P H EI Pl l
P EI P P EI

   
+   

   

∴ sinH EI Pl
P P EI

 
 
 

= cosHl Pl
P EI

 
 
 

Fig. 34.5...(Minus sign due to conscavity
    towards initial centre line
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or tan Pl
EI

 
 
 

=
Pl
EI

 
 
 

A little consideration will show that the value of 
Pl
EI

 
 
 

in radians, has to be such that its

tangent is equal to itself. We know that the only angle, the value of whose tangent is equal to itself, is
about 4.5 radians.

∴ Pl
EI

= 4.5          or          
2 20.25Pl

EI
× =           or         P= 2

20.25 EI

l

∴ P
2

2

2 EI

l

π=

NOTE: A little consideration will show that 20.25 is not exactly equal to 2π2, but approximately equal to 2π2.
This has been done to rationalise the value of P, i.e., crippling load in various cases.

34.11. Euler’s Formula and Equivalent length of a Column
In the previous articles, we have derived the relations for the crippliing load under various end

conditions. Sometimes, all these cases are represented by a general equation called Euler’s formula,

PE =
2

2
e

EI

L

π

where Le  is the equivalent or effective length of column.
The is another way of representing the equation, for the crippling load by an equivalent length

of effective length of a column. The equivalent length of a given column with given end conditions,
is the length of an equivalent column of the same material and cross-section with both ends hinged
and having the value of the crippling load equal to that of the given column.

The equivalent lengths (L) for the given end conditions are given below:

Table 34.1
S.No. End conditions Relation between equivalent Crippling load (P)

length (Le)  and actual length (l)

1. Both ends hinged Le = l P = ( )
2

2

EI

l

π
= 

2

2

EI

l

π

2. One end fixed and the other free Le = 2 l P =
2

2(2 )

EI

l

π
= 

2

24

EI

l

π

3. Both ends fixed Le = 
2
l

P =
2

2

2

EI

l

p

Ê ˆ
Ë ¯

= 
2

2

4 EI

l

π

4. One end fixed and the other hinged Le = 
2
l

P =
2

2

2

EI

l

p

Ê ˆ
Á ˜Ë ¯

= 
2

2

2 EI

l

π

NOTE. The vertical column will have two moments of inertia (viz., IXX and LYY). Since the column will tend to
buckle in the direction of leas moment of inertia, therefore the least value of the two moments of inertia
is to be used in tlhe relation.
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34.12. Slenderness Ratio
We have already discussed in Art. 34.11 that the Euler’s formula for the crippling load,

PE =
2

2
e

EI

L

π
...(i)

We know that the buckling of a column under the crippling load will take place about the axis of
least resistance. Now substituting I = Ak2 (where A is the area and k is the least radius of gyration of
the section) in the above equation,

PE =
( )2 2 2

2 2
e e

E Ak EA

L L
k

p p
=
Ê ˆ
Á ˜Ë ¯

...(ii)

where eL

k
 is known as slenderness ratio. Thus slenderness ratio is defined as ratio of equivalent (or

unsupported) length of column to the least radius of gyration of the section.
Slenderness ratio does not have any units.

NOTE. It may be noted that the formula for crippling load, in the pervious articles, have been derived on the

assumption the the slenderness ratio eL
k

 is so large, that the failure of the column occurs only due to

bending, the effect of direct stress (i.e., 
P
A

) being negligible.

34.13. Limitation of Euler’s Formula
We have discussed in Art. 32.12 that the Euler’s formula for the crippling load,

PE =
2

2
e

EA

L
k

p

Ê ˆ
Á ˜Ë ¯

∴ Euler’s crippling stress,

σE =
2

2
e

EP
A L

k

p=
Ê ˆ
Á ˜Ë ¯

A little consideration will show that the crippling
stress will be high, when the slenderness ratio is small.
We know that the crippling stress for a column cannot
be more than the crushing stress of the column mate-
rial. It is thus obvious that the Euler’s formula will
give the value of crippling stress of the column (equal
to the crushing stress of the column material) corre-
sponding to the slenderness ratio. Now consider a mild
steel column. We know that the crushing stress for the
mild steel is 320 MPa or 320 N/m2 and Young’s modu-
lus for the mild steel is 200 GPa or 200 × 103 N/mm2.

Now equating the crippling stress to the crushing stress,

320 =
2 2 3

2 2

(200 10 )

e e

E

L L
k k

π π × ×=
   
      



804 � Strength of Materials

∴
2

eL
k
Ê ˆ
Á ˜Ë ¯

=
2 3200 10

320
π × ×

or eL
k

= 78.5 say 80

Thus, if the slenderness ratio is less than 80 the Euler’s formula for a mild steel column is not
valid.

Sometimes, the columns, whose slenderness ratio is more than 80 are known as long columns
and those whose slenderness ratio is less than 80 are known as short columns. It is thus obvious that
the Euler’s formula holds good only for long columns.
NOTE. In the Euler’s formula, for crippling load, we have not taken into account the direct stresses induced in

the material due to the load, (which increases gradually from zero to its crippling value). As a matter of
fact, the combined stress, due to direct load and slight bending reaches its allowable value at a load, lower
than that required for buckling ;  and therefore this will be the limiting value of the safe load.

EXAMPLE 34.1. A steel rod 5 m long and of 40 mm diameter is used as a column, with on
end fixed and the other free. Determine the crippling load by Euler’s formula. Take E as 200
GPa.

SOLUTION. Given : Length (l) = 5 m = 5 × 103 mm ;  Diameter of column (d) = 40 mm and
modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

We know that moment of iertia of the column section,

I =
4 4( ) (40)

64 64
dπ π× = ×  = 40 000 π mm4

Since the column is fixed at one end and free at the other, therefore equivalent length of the
column,

Le = 2 l = 2 × (5 × 103) = 10 × 103 mm

∴ Euler’s crippling load,   PE =
2 2 3

2 3 2

(200 10 ) (40000 )

(10 10 )e

EI

L

π π × × × π=
×

 = 2480 N

= 2.48 kN        Ans.

EXAMPLE 34.2. A hollow alloy tube 4 m long with external and internal diameters of 40 mm
and 25 mm respectively was found to extend 4.8 mm under a tensile load of 60 kN. Find the buckling
load for the tube with both ends pinned. Also find the safe load on the tube, taking a factor of safety
as 5.

SOLUTION. Given : Length l = 4 m ;  External diameter of column (D) = 40 mm ;  Internal
diameter of column (d) = 25 mm ;  Deflection (δl ) = 4.8 mm ;  Tensile load = 60 kN = 60 × 103 N
and factor of safety = 5.

Buckling load for the tube
We know that area of the tube,

A = 2 2 2 2[ ] [(40) (25) ]
4 4

D dπ π× − = −  = 765.8 mm2

and moment of inertia of the tube,

I =
4 4 4 4[ ] [(40) (25) ]

64 64
D dπ π= = −  = 106 500 mm4

We also know that strain in the alloy tube,

e = 3
4.8 0.0012

4 10

l
l
δ = =

×
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and modulus of elasticity for the alloy,

E =
360 10Load

Area × Strain 765.8 0.0012
×=
×  = 65 290 N/mm2

Since the column is pinned at its both ends, therefore equivalent length of the column,
Le = l = 4 × 103 mm

∴ Euler’s buckling load, PE =

2 2

2 3 2

65290 106500

(4 10 )e

EI

L

π π × ×=
×  = 4290 N

= 4.29 kN        Ans.
Safe load for the tube

We also know that safe load for the tube

=
Buckling load 4.29

Factor of safety 5
=  = 0.858 kN        Ans.

EXAMPLE 34.3. Compare the ratio of the strength of a solid steel column to that of a hollow
of the same cross-sectional area. The internal diameter of the hollow column is 3/4 of the exter-
nal diameter. Both the columns have the same length and are pinned at both ends.

SOLUTION. Give : Area of solid steel colum AS = AH (where AH = Area of hollow column) ;
Internal diameter of hollow column (d) = 3 D/4 (where D = External diameter) and length of solid
column (lS) = lH (where lH = Length of hollow column).

Let D1 = Diameter of the solid column,

kH = Radius of gyration for hollow column and

kS = Radius of gyration for solid column.
Since both the columns are pinned at their both ends, therefore equivalent length of the solid

column,

LS = lS = LH = lH = L

We know that Euler’s crippling load for the solid column,

PS =

2 22

2 2

· ·S S

H

E A kEI

L L

ππ = ...(i)

Similarly Euler’s crippling load for the hollow column

PH =

2 22

2 2

· ·H H

H

E A kEI

L L

ππ = ...(ii)

Dividing equation (ii) by (i),

H

S

P
P

=

22 2
2

2 2 2

2 2 2
1 1 1

3
416

16

H

S

DD d D
k D d
k D D D

 + =    +  = = = 
 

=
2

2
1

25

16

D

D
...(iii)

Since the cross-sectional areas of the both the columns is equal, therefore

2
14

Dπ × =
2 2

2 2 2 3 7
( )

4 4 4 4 16
D D

D d D
 π π π − = − = ×  

   
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∴ 2
1D =

27
16
D

Now substituting the value of 2
1D  in equation (iii),

H

S

P
P

=
2

2

25 25
77

16
16

D

D
=

×
        Ans.

EXAMPLE 34.4. An I section joist 400 mm × 200 mm × 20 mm and 6 m long is used as a strut
with both ends fixed. What is Euler’s cripp;ing load for the column? Take Young’s modulus for
the joist as 200 GPa.

SOLUTION. Given : Outer depth (D) = 400 mm ;  Outer width (B) = 200 mm ;  Length (l) = 6 m =
6 × 103 mm and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

From the geometry of the figure, we find that inner depth,

d = 400 – (2 × 20) = 360 mm
and inner width, b = 200 – 20 = 180 mm

We know that moment of inertia of the joist section about X-X axis,

IXX = 2 31 [ ]
12

BD ba−

=
3 3 41 [200 (400) 180 (360) ]mm

12
× − ×

= 366.8 × 106 mm4                          ...(i)

Similarly, IYY =
3 3

42 (200) 360 (20)
2 mm

12 12

 × ×× + 
  

= 2.91 × 106 mm4 ...(ii)

Since IYY is less than IXX, therefore the joist will tend to buckle in Y-Y direction. Thus, we shall
take the value of I as IYY = 2.91 × 106 mm4. Moreover, as the column is fixed at its both ends, therefore
equivalent length of the column,

Le =
3

3(6 10 )
3 10 mm

2 2
l ×= = ×

∴ Euler’s crippling load for the column,

PE =
2 2 3 6

3
2 3 2

(200 10 ) (2.91 10 )
638.2 10 N

(3 10 )e

EI

L

π π × × × ×= = ×
×

= 638.2 kN        Ans.

EXAMPLE 34.5. A T-section 150 mm × 120 mm × 20 mm is used as a strut of 4 m long with
hinged at its both ends. Calculate the crippling load, if Young’s modulus for the material be 200
GPa.

SOLUTION. Given : Size of T-section = 150 mm × 120 mm × 20 mm ;  Length (l ) = 4 m = 4 × 103

mm and Young’s modulus (E) = 200 GPa = 200 × 103 N/mm2.

First of all, let us find the centre of the T-section; Let bottom of the web be the axis of
reference.

Fig. 34.6
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Web
a1 = 100 × 20 = 2000 mm2

y1 =
100 50 mm

2
=

Flange
a2 = 150 × 20 = 3000 mm2

y2 =
20120 110mm
2

 − = 
 

We know that distance between the centre of gravity of the T-
section and bottom of the web

y = 1 1 2 2

1 2

(2000 50) (3000 110)
86 mm

200 3000
a y a y

a a
+ × + ×= =
+ +

We also know that moment of inertia of the T-section about X-X axis,

IXX =
3 3

2 220 (100) 150 (20)
2000 (36) 3000 (24)

12 12

   × ×+ × + + ×      
   

mm4

= (4.26 × 106) + (1.83 × 106) = 6.09 × 106 mm4

Similarly, IYY =
3 3

6 4100 9200) 20 (150)
5.069 10 mm

12 12
× ×+ = ×

Since IYY is less than IXX, therefore the column will tend to buckle in Y-Y direction. Thus, we shall
take the value of I as IYY = 5.69 × 106 mm4. Moreover, as the column is hinged at its both ends,
therfore length of the column,

Le = l = 4 × 103 mm

∴ Euler’s crippling load, PE =
2 2 3 6

3
2 3 2

(200 10 ) (5.69 10 )
702 10 N

(4 10 )e

EI

L

π π × × × ×= = ×
×

= 702 kN        Ans.

EXERCISE 34.1

1. A mild steel column of 50 mm diameter is hinged at both of its ends. Find the crippling load for
the column, if its length is 2.5 m. Take E for the column material as 200 GPa. [Ans. 96.9 kN]

2. A hollow cast iron column of 150 mm external diameter and 100 mm internal diameter is 3.5 m
long. If one and of the column is rigidity fixed and the other is free, find the critical load on the
column. Assume modulus of elasticity for the column material as 120 GPa. [Ans. 482 kN

3. A 1.75 m long steel column of rectangular cross-section 120 mm × 100 mm is rigidity fixed at
one end and hinged at the other. Determine the buckling load on the column and the correspond-
ing axial stress using Euler’s formula.  Take E for the column material  as 200 GPa.

[Ans. 12.84 MN ;  1070 MPa]

4. An -section 240 mm × 120 mm × 20 mm is used as 6 m long column with both ends fixed. What
is the crippling load for the column? Take Young’s modulus for the joist as 200 GPa.

[Ans. 1292.5 kN]

Fig. 34.7


