
GEOMETRIC DESIGN OF HIGHWAYS 

Geometric design for transportation facilities includes the design of geometric cross sections, 

horizontal alignment, vertical alignment, intersections and various design details. These basic 

elements are common to all linear facilities, such as roadways, railways, and airport runways 

and taxiways. Although the details of design standards vary with mode and class of facility, 

most of the issues involved in geometric design are similar for all modes. In all cases, the goals 

of geometric design are to maximize the comfort, safety and economy of the facilities, while 

maximizing their environmental impacts. We therefore focus on the fundamentals of geometric 

design, and standards and examples from different modes. 

Basic physical elements of a highway 

The basic features of a highway are the carriageway itself, expressed in terms of the number of 

lanes used, the central reservation or median strip, the shoulders (including verges) and 

drainage. Depending on the level of the highway relative to the surrounding terrain, side-slopes 

may also be a design issue. 

 

Main carriageway 

The chosen carriageway depends on a number of factors, most notably the volume of traffic 

using the highway, the quality of service expected from the installation and the selected design 

speed. In most situations a lane width of 3.65 m is used, making a standard divided or 

undivided 2-lane carriageway 7.3 m wide in total. Table 1 gives a summary of carriageway 

widths normally used in the UK. These widths are as stated in TD 27/96 (DoT, 1996). Any 

reduction or increase in these widths is considered a departure from standard. The stated lane 

widths should only be departed from in exceptional circumstances such as where cyclists need 

to be accommodated or where the number of lanes needs to be maximized for the amount of 

land available. In Scotland and Northern Ireland, a total carriageway width of 6.0m may be used 

on single carriageway all-purpose roads where daily flow in the design year is estimated not to 

exceed 5000 vehicles. 

 

 



 

 

Central reservation 

A median strip or central reservation divides all motorways/dual carriageways. Its main 

function is to make driving safer for the motorist by limiting locations where vehicles can turn 

left (on dual carriageways), completely separating the traffic travelling in opposing directions 

and providing a space where vehicles can recover their position if for some reason they have 

unintentionally left the carriageway. In urban settings, a width of 4.5 m is recommended for 

2/3-lane dual carriageways, with 4.0m recommended for rural highways of this type. While 

these values should be the first option, a need to minimize land take might lead to reductions in 

their value. Use of dimensions less than those recommended is taken as a relaxation rather 

than a departure from the standard (TD27/96).  (The term ‘relaxation’ refers to a relaxing of the 

design standard to a lower level design step, while a ‘departure’ constitutes non-adherence to a 

design standard where it is not realistically achievable. Use of central reservation widths 

greater than the values stated is permitted. Its surfacing material should be different to that on 

the carriageway itself. Grass, concrete or bituminous material can be used. 

 

 

Hard strips/verges 

On single carriageway roads (normal and wide), a 1m wide hardstrip and a 2.5 m wide grassed 

verge is employed on the section of roadway immediately adjacent to the main carriageway on 

each side. On rural 2 and 3-lane motorways, a hardshoulder of 3.3 m and a verge of 1.5 m are 

the recommended standard. On rural 2/3-lane dual carriageways, the 1m wide hardstrip and 

2.5 m wide verge is detailed on the nearside with a 1m hardstrip on the offside. For urban 

motorways the verge dimension varies while the hard shoulder is set at 2.75m wide. Diagrams 

of typical cross-sections for different road classifications are given in Figs 6.1 to 6.4. 
 

 

 
 

 

 

 



 
 

 

 

 
 

 
 

 

 
 

 

The proper geometric design of a highway ensures that drivers use the facility with safety and 

comfort. The process achieves this by selecting appropriate vertical and horizontal curvature 

along with physical features of the road such as sight distances and superelevation. The 

ultimate aim of the procedure is a highway that is both justifiable in economic terms and 

appropriate to the local environment. 

 

Highway cross sections consists of travelled way, shoulders (or parking lanes), and drainage 

channels. Shoulders are intended primarily as a safety feature. They provide for 

accommodation of stopped vehicles, emergency use, and lateral support of the pavement. 



Shoulders may either be paved or unpaved. Drainage channels may consist of ditches (usually 

grass swales) or of paved shoulders with berms or curbs and gutters. 

Standard lane with is 3.65 m, although narrower lanes are common on older roadways, and 

may still be provided in cases where the standard lane width is not economical.  

 

Vertical alignment 

The vertical alignment of a transportation facility consists of tangent grades (straight lines in the 

vertical plane) and vertical curves. Vertical alignment is documented by the profile. The profile 

is a graph that has elevation as its vertical axis and distance, measured in stations along the 

centerline or other horizontal reference line of the facility, as horizontal axis. 

 

Tangent grades 

Tangent grades are designated according to their slopes or grades. Maximum grades vary, 

depending on the type of facility, and usually do not constitute an absolute standard. The effect 

of steep grade is to slow down heavier vehicles (which typically have the lowest power/weight 

ratios) and increase operating costs. Furthermore, the extent to which any vehicle (with a given 

power/ weight ratio) is slowed depends on both the steepness and length of the grade. The 

effect of slowing down the heavier vehicles depends on the situation, and is often more a 

matter of traffic analysis than simple geometric design. As result the maximum grade for a 

given facility is a matter of judgment, with the tradeoffs usually being cost of the construction 

versus speed. 

 

Vertical curves 

 

Vertical tangents with different grades are joined by vertical curves such as the one shown in 

figure below, it is a symmetric vertical curve. 
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Vertical curves are normally parabolas centred about the point of intersection (P.I) of the 

vertical tangent they join. Vertical curves are thus of the form  

 

𝑦 =yo +g1x + 
𝑟2

2
 ---------------- (1) 

 

Where y = elevation of a point on the curve 

 yo= elevation of the beginning of the vertical curve (BVC) 

 g1 = grade just prior to the curve 

 x = horizontal distance from the BVC to the point on the curve 

 r = rate of change of grade 

the rate of change of grade, in turn, is given by 

𝑟 =  
𝑔1−𝑔2

𝐿
  ……………………………(2) 

 

Where g2 is the grade just beyond the end of the vertical curve (EVC) and L is the length of the 

curve. Also, vertical curves are sometimes described by K, the reciprocal of r. K is the distance in 

metres required to achieve a 1 % change in grade. Vertical curves are classified as sags where 

g2 >g1 and crest otherwise. Note that r (and hence the term
𝑟𝑥2

2
) will be positive for sags and 

negative for crests. 

Also note that the vertical distances in the vertical curve formulas are product of grade times a 

horizontal distance. In consistent units, if vertical distances are to be given in metres, horizontal 

distances should also be in metres and grades should be dimensionless ratios. In many cases, 

however, it is more convenient to represent grades in percent and horizontal distances in 

stations. This produces the correct result because the grade is multiplied by 100 and the 

horizontal distance divided by 100, and the two factors of 100 cancel. It is very important not to 

mix the two methods, however. If grades are in percent, horizontal distances must be in 

stations; likewise, if grades are dimensionless ratios, horizontal distances must be in metres. 

The parabola is selected as the vertical curve so that the rate of change of grade, which is the 

second derivative of the curve, will be constant with distance. Note that the first derivative is 

the grade itself, and since the rate of change is constant, the grade of any point in the vertical 

curve is a linear function of the distance from the BVC to the point. That is, 

 

𝑔 =
𝜕𝑦

𝜕𝑥
= 𝑔1   + 𝑟𝑥 − − − − − − − (3) 



The quantity 
𝑟𝑥2

2
 is the distance from the tangent to the curve and is known as the offset. If x is 

always measured from the BVC, the offset given by 
𝑟𝑥2

2
  will be measured from 𝑔1   tangent. To 

determine the offset from the g2 tangent, x should be measured backwards from the EVC. Since 

the curve is symmetrical about its centre, the offsets from the g1 and g2 tangents, respectively, 

are also symmetrical about the centre of the curve which occurs at the station of its P.I. 

 

Other properties of the vertical curve may be used to sketch it. For instance, at its centre, the 

curve passes halfway between the P.I and a chord joining the BVC and EVC. At the quarter 

points, it passes one quarter of the way between the tangents and the chord. Normal drafting 

practice is to show the P.I by means of a triangular symbol, although the extended vertical 

tangents shown in the figure are often omitted. The BVC and EVC are shown by means of 

circular symbols. The P.I., BVC, EVC are identified by notes. The stations of the BVC and EVC are 

given notes, as are the stations and elevation of the P.I., the two tangent grades, and the length 

of the vertical curve. 

Elevations on vertical curves are easily calculated by means of a calculator, computer, or 

spreadsheet program. On traditional way of representing then is in the form of a table shown 

below. The table represents a 300 m sag vertical curve between a + 1.0 % grade and a +6.0% 

grade. 

 

Station Grade Tangent 
elevation 

Offset Profile 
elevation 

99 +75 +1% 149.75  149.75 

100 +00 BVC 150.00  150.00 

100+25  150.25 0.05 150.30 

100+50  150.50 +0.21 150.71 

100+75  150.75 +0.47 151.22 

101+00  151.00 +0.83 151.83 

101+25  151.25 +1.30 152.55 

101+50 P.I 151.50 +1.88 153.38 

101+75  153.00 +1.30 154.30 

102+00  154.50 +0.83 155.33 

102+25  156.00 +0.47 156.47 

102+50  157.50 +0.21 157.71 

102+75  159.00 +0.05 159.00 

103+00 EVC 160.50  160.50 

103+25 6% 162.00  162.00 

 

The first column gives the station. The second column gives the intersecting grades and the 

locations of the BVC, P.I., and EVC. The third column gives the elevation of each point on the 



tangent grades, calculated as BVC elevation plus g1x for the first tangent grade and P.I. 

elevation plus g2(x-L/2)for the second. The fourth column gives the offset, calculated as 
𝑟𝑥2

2
  

with x measured from either BVC or EVC as appropriate: since the offsets are symmetrical 

about the P.I., however they need to be calculated only from the BVC to the P.I. the last column 

gives the curve elevation, which is the tangent elevation plus the offset. It should be noted that 

curve elevations can also be calculated by using only offsets from the g1 tangent, and that in 

many cases it may be more convenient to use only one tangent. 

 

Example 

A -2.5% grade is connected to a +1.0% grade by means of a 180 m vertical curve. The P.I station 

is 100 + 00 and the P.I elevation is 100.0 m above sea level. What are the station and elevation 

of the lowest point on the vertical curve? 

 

Solution 

Rate of change of grade:  

𝑟 =  
𝑔1−𝑔2

𝐿
=  

1.0%−(−2.5%)

1.8 𝑠𝑡𝑎
= 1.944%/𝑠𝑡𝑎     

Station of the low point 

At low point, g =0 

g= g1 + rx =0 

or 

𝑥 =
−𝑔1

𝑟
= − (

−2.5

1.944
) = 1.29 = 1 + 29 𝑠𝑡𝑎 

 

Station of BVC =(100 +00) –(0+90) =99+10 

 

Station of low point = (99+ 10) + (1+29) =100 +39 

 

Elevation of BVC: 

𝑦0=100.0 𝑚 + (−0.9 𝑠𝑡𝑎)(−2.5%) =  102.25 𝑚 

 

Elevation of low point: 

 

𝑦 =yo +g1x + 
𝑟2

2
 

= 102.25 𝑚 + (−2.5%)(1.29 𝑠𝑡𝑎) +
(1.944% 𝑠𝑡𝑎)(1.29 𝑠𝑡𝑎)2

2
 

= 100.64 m 

 



Design standards for vertical curves establish their minimum lengths for specific circumstances. 

For highways, minimum length of vertical curve may be based on sight distance, on comfort 

standards involving vertical acceleration, or appearance criteria. For airport runways and 

taxiways, minimum vertical curve lengths are based on sight distance. 

In most cases, sight distance or appearance standards will gorvern for highways. The equations 

used to calculate minimum length of vertical curves based on the sight distance depend on 

whether the sight distance is greater than or less than the vertical curve length. For crest 

vertical curves, the minimum length depends on the sight distance, the height of the driver’s 

eye and the height of the object to be seen over the crest of the curve. The minimum length is 

given by the formula 

 

Lmin = 
𝐴𝑆2

200(√ℎ1+√ℎ2)2      𝑤ℎ𝑒𝑛 𝑆 ≤ 𝐿………………………(4a) 

  

Lmin  = 2𝑆 −
200(√ℎ1+√ℎ2)2

𝐴
    𝑤ℎ𝑒𝑛 𝑆 ≥ 𝐿 ……………..(4b) 

Where S = sight distance 

 L = vertical curve length 

 A = absolute value of the algebraic difference in grades, in percent |g1 –g2| 

 h1 = height of eye 

 h2 = height of object 

For stopping sight distance, the height of the object is normally taken to be 0.150 m. For 

passing sight distance, the height of object used by AASHTO is 1.300 m. height of eye is 

assumed to be 1.070 m. 

Inserting these standard values for h1 and h2, equation 4 may be reduced to 

 

Lmin =   
𝐴𝑆2

404
    𝑤ℎ𝑒𝑛 𝑆 ≤ 𝐿 

 

 = 2𝑆 −
404

𝐴
      𝑤ℎ𝑒𝑛 𝑠 ≥ 𝐿 

for stopping sight distance and 

 

Lmin = 
𝐴𝑆2

946
    𝑤ℎ𝑒𝑛 𝑆 ≤ 𝐿 

 

 = 2𝑆 −
946

𝐴
      𝑤ℎ𝑒𝑛 𝑠 ≥ 𝐿 

for passing sight distance. 

 



For sag vertical curves, stopping sight distance is based on the distance illuminated by the 

headlights at night. Design standards are based on an assumed headlight height of 0.600 m and 

an upward divergence of the headlight beam of 10. As the case of the crest vertical curves, the 

formulas for minimum length of vertical curve depend on whether the length of the curve is 

greater or less than the sight distance. For sag vertical curves, the formula is 

 

Lmin = 
𝐴𝑆2

200[0.6+𝑆(tan 10)]
=

𝐴𝑆2

120+3.5𝑆
   𝑤ℎ𝑒𝑛 𝑆 ≤ 𝐿 

 

 2𝑆 −
200[0.6+𝑆(tan 10)]

𝐴
= 2𝑆 −

120+3.5𝑆

𝐴
 𝑤ℎ𝑒𝑛 𝑆 ≥ 𝐿 

 

Design charts or tables are used to determine minimum length of vertical curve to provide 

stopping sight distance for both crest and sag vertical curves, and passing sight distance on 

crests. These may be found in the AASHTO Policy on Geometric Design of Highways and Streets. 

In some cases, sag vertical curves with a small total grade change can be sharp enough to cause 

discomfort without violating sight distance standards. In this case, it is necessary to establish a 

comfort criterion of the form 

𝑟 ≤  
𝑎

𝑣2
 

 

Where r  is the rate of change of grade, a is the maximum radial acceleration permitted, and v is 

the speed. There is no general agreement as to the maximum value of radial acceleration that 

can be tolerated without producing discomfort. AASHTO suggests a value of 0.3 m/s2, and 

suggests the standard 

 

 

𝐿 ≥  
𝐴𝑉2

395
 

Where L = length of vertical curve, m 

 A = g2- g1, percent 

 V = design speed, km/h 

 

Minimum vertical curve standards for highways may also be based on appearance. This 

problem arises because short vertical curves tend to look like kinks when viewed from a 

distance. Appearance standards vary from agency to agency. Current California standards for 

instance, require a minimum vertical curve length of 60 m where grade breaks are less than 2% 

or design speeds are less than 60 km/h, the minimum vertical curve length is given by L = 2V, 

where L in the vertical curve length in metres and V is the design speed in Km/h. 

 



Example 

Determine the minimum length of a crest vertical curve between a +0.5% grade and a -1.0% 

grade for a road with 100 km/h design speed. The vertical curve must provide 190 m stopping 

distance and meet the California appearance stopping distance criterion 

 

Solution 

Stopping sight distance criterion: 

 

Assume 𝑆 ≤ 𝐿 

 𝐿 =  
𝐴𝑆2

200(√ℎ1+√ℎ2)2
  =  

[0.5−(−1.0)](1902)

200(√1.017+ √0.150)2
= 134.0 𝑚      

134.0 m <190 m, so S > L 

 

 

 𝐿 = 2𝑆 −
200(√ℎ1+√ℎ2)2

𝐴
  = 2(190) −

200(√1.070+√0.150)2

[0.5−(−1.0)
  

 

= 380.0 – 269.5 = 110.5 m 

Appearance criterion 

Design speed = 100km/h > 60 km/h but grade break = 1.5% < 2%. Use 60 m. 

Conclusion: 

Sight distance criterion governs. Use 120 m vertical curve. 

 

Example 

Determine the minimum length of a sag vertical curve between a -0.7% and a + 0.5% grade for a 

road with a 110 km/h design speed. The vertical curve must provide 220 m stopping sight 

distance and meet the California appearance criteria and the AASHTO comfort standard. Round 

up to the next greatest 20 m interval. 

 

Assume 𝑆 ≤ 𝐿 

 

 𝐿 =  
𝐴𝑆2

120+3.5𝑆
=

[0.5−(−0.7)](220)2

120+3.5 (220)
= 65.3 𝑚 

 

65.3 m < 220 m, so S > L 

 

 𝐿 = 2𝑆 −
120+3.5𝑆

𝐴
= 2(220) −

120+3.5(220)

[0.5−(−0.7)]
 

 

= 440 -741.7 = 301.7 m 



 Since L< 0, no vertical curve is needed to provide stopping sight distance 

 

Comfort criterion: 

 

 𝐿 =  
𝐴𝑉2

395
=  

[0.5−(−0.7)](1102)

395
= 36.8 𝑚 

Appearance criterion: 

Design speed = 110 km/h > 60 km/h but grade break = 1.2% < 2%. Use 60 m. 

Conclusion: 

Appearance criterion governs. Use 60 m vertical curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Finally, vertical curve lengths may be limited by the need to provide clearances over or under 

objects such as overpasses or drainage structures. In the case of sag vertical curves passing over 

objects or crest vertical curves passing under them, the required clearances establish minimum 

lengths; in the case of crest vertical curves passing over objects or sags passing under them, the 

clearances exhibit maximum lengths. Where clearances limit vertical curve lengths, adequate 

sight distance should still be provided. 

In either case, the maximum or minimum length of the vertical curve may be determined by 

assuming the clearance is barely met and calculating the length of the vertical curve passing 

through the critical point thus established. It is easiest to do this in the figure shown below. In 

the figure, C represents the critical clearance, z the horizontal distance from P.I. to the critical 

point, and y’ the offset between the critical point and the tangent passing through the BVC.  

The equation for the offset is 

 

 𝑦′ =
𝑟𝑥2

2
… … … … … … .1 

Where r, as before, is 

 𝑟 =
𝑔2−𝑔1

𝐿
=

𝐴

𝐿
… … … … … 2 

And 

 𝑥 =
𝐿

2
+  𝑧 … … … … … … … 3 

 

Substituting equation 2 & 3 into equation 1 

 𝑦′ =  
𝐴(𝐿

2⁄ +𝑧)2

2𝐿
… … … … … 4 

Expansion and rearrangement of equation 2 leads to the quadratic equation 

 𝐴𝐿2 +  (4𝐴𝑧 − 8𝑦′)𝐿 + 4𝐴𝑧2 = 0 … … … … … … . .5 

Solving equation 5 results in two roots. The smaller of these represents a vertical curve that is 

tangent between the P.I. and the critical point. Discarding the solution and letting w = y’/A to 

simplify the notation, the solution for L in the larger root leads to 

 𝐿 = 4𝑤 − 2𝑧 + 4√(𝑤2 − 𝑤𝑧) 

As an expression for the maximum or minimum vertical curve length. 

 

Example 

A vertical curve joins a – 1.2% grade to a + 0.8 % grade. The P.I. of the vertical curve is at station 

75 + 00 and elevation 50.90 m above sea level. The centerline of the roadway must clear a pipe 

located at station 75 + 40 by 0.80 m. the elevation of the top of the pipe is 51.10 m above sea 

level. What is the minimum length of the vertical curve that can be used? 

Determine z: 

 𝑧 = (75 + 40) − (75 + 00) =  0.40 𝑠𝑡𝑎. 



Determine y’ 

Elevation of tangent =50.90 + (−1.2)(0.4) = 50.42 𝑚 

Elevation of roadway = 51.10 + 0.80 = 51.90 𝑚 

Y’ = 51.90 -50.42 =1.48 m 

 

Determine w: 

 𝐴 = 𝑔2 − 𝑔1 = (+0.8)— 1.2 = 2.0 

 𝑤 =
𝑦′

𝐴
=

1.48

2
= 0.74 

 

Determine L 

 𝐿 = 4𝑤 − 2𝑧 + 4√(𝑤2 − 𝑤𝑧) 

 = 4(0.74) − 2(0.4) + √[0.742 − (0.74)(0.4)] = 4.17𝑠𝑡𝑎 = 417 𝑚 

 

Check y’ 

 𝑥 =
4.17

2
+ 0.4 = 2.485 𝑠𝑡𝑎 

 𝑟 =
𝐴

𝐿
=

2

4.17
= 0.48 

 𝑦′ =  
𝑟𝑥2

2
=

(0.48)(2.485)2

2
= 1.48  𝑐ℎ𝑒𝑐𝑘 

 

 

Horizontal alignment 

Horizontal alignment for linear transportation facilities such as highways and railways consists 

of horizontal tangents, circular curves and possibly transition curves. In the case of highways, 

transition curves are not always used. 

Curves are generally used on highways and railways where it is necessary to change the 

direction of motion. They are employed to effect the gradual change of direction at the 

intersection of straight lines. The lines connected by the curves are tangential and are called 

tangents or straights. The curves are generally circular arcs but parabolic or spiral arcs are also 

in use. 

Horizontal curves can be circular or non – circular( transitional) 

Example 

It is required to connect two straights whose deflection angle is 130 16’00’’ by a circular curve of 

radius 600 m. make the necessary calculations for setting out the curve by the tangented angle 

method if the through chainage of the intersection point is 2745.72 m. use a chord length of 25 

m and sub – chord at the beginning and end of the curve to ensure that the pegs are placed at 

exact 25 m multiple of through chainage. 

 



Tangent length = 𝑅 tan
𝜃

2
= 600 tan (

13016′00′′

2
) = 69.78 𝑚 

Therefore chainage of 𝑇1 = 2745.72 − 69.78 = 2675.94 𝑚 

Round this figure to 2700 m 

Length of initial sub chord = 2700 -2675.94 = 24.06 m 

Length of circular curve = 
𝑅𝜃𝜋

180
=  

600𝑥 13016′00′′𝑥 𝜋

180
= 138.93 𝑚 

Chainage of 𝑇2 = 2675.94 + 138.93 = 2814.87 𝑚 

Length of final sub chord 

 = 2814.87 − 2800 = 14.87 𝑚 

The tangential angles for these chords are obtained from the formula 

 𝛼 = 1718.9 𝑥 (
𝑐ℎ𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑎𝑑𝑖𝑢𝑠
) 𝑚𝑖𝑛 

 

Points Chainage (m) Chord length(m) Individual 
tangential angle 

Cumulative 
tangential angle 

𝑇1 2675.94 0 00000’00’’ 00000’00’’ 

𝐶1 2700.00 24.06 01008’56’’ 01008’56’’ 

𝐶2 2725.00 25.00 01011’37’’ 02020’33’’ 

𝐶3 2750.00 25.00   

𝐶4 2775.00 25.00   

𝐶5 2800.00 25.00   

𝑇2 2814.87 14.87 00’42’36’’ 06038’00’’ 

 138.93 (check)    

 

 

 

 

Superelevation 

The purpose of superelevation or banking of curves is to counteract the centrifugal force 

produced as a vehicle rounds a curve. The term itself comes from railroad practice, where the 

top of the rail is the profile grade. In curves, the profile grade line follows the lower rail, and the 

upper rail is said to be superelevated. Since most railways are built to a standard guage, the 

superelevations are given as the difference between in elevation between the upper and lower 

rail. In the case of the highway, more complicated modifications of the cross section are 

required, and because widths vary, superelevation is expressed as a slope. 

A vehichle travelling on a horizontal curve exerts an outward force called centrifugal force. To 

resist this force and maintain the desired design speed, highway curves need to be 

superelevated. Superelevation may be defined as the rotation of the roadway cross section in 

such a manner as to overcome the centrifugal force that acts on a motor vehicle traversing a 

curve. 



On the superelevated highway, the centrifugal force can be resisted by: 

1. The weight component of the vehicle parallel to the superelevated surface 

2. The side friction between the tires and the pavement 

3. Introduction of transition curves 

4. Pavement widening. 

It is impossible to balance centrifugal force by superelevation alone, because for any given 

curve radius, a certain superelevation rate is exactly correct for only one operating speed 

around the curve. At all other speeds, there will be a side thrust outward or inward relative to 

the curve centre which must be offset by side friction 

 

The transitional rate of applying superelevation into and out of curves is influenced by design speed, 

degree of curvature and number of lanes. Introducing superelevation permits a vehicle to travel through 

a curve more safely and at a higher speed than would be possible with a normal crown section. For a 

given degree of curvature, a steeper superelevation is required for a higher design speed than is needed 

for a lower design speed. For a given design speed more superelevation is needed through sharp curves 

than for relatively flat curves. The maximum rates of superelevation used on roadways are controlled by 

four factors: 

(1) Climate conditions (i.e. frequency of ice and snow); 

(2) Terrain conditions (i.e. flat or rolling); 

(3) Type of area (i.e. rural or urban); and 

(4) Frequency of slow-moving vehicles. 

 

Analysis of superelevation 
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 𝑃 =
𝑊𝑉2

𝑔𝑟
 



Let the force acting on the vehicle while moving on a circular curve is as shown above. Here,  

A = inner edge of the road 

B = outer edge of the road 

 𝛼 = inclination of the road surface to horizontal 

e = superelevation of road i.e raising of outer edge at rate of 1 horizontal to e vertical. 

 

Therefore, tan 𝛼 =
𝑒

1
 

W = weight of the vehicle acting vertically downwards 

V = speed of vehicle in km/h 

v = speed of vehicle at curve in metres/sec. = 0.25V 

R = radius of curvature 

µ = lateral coefficient of friction between the road surface and tyres 

N = load reaction on the road surface 

P = centrifugal force acting in outward direction or lateral force 

 

 𝑃 =
𝑊𝑉2

𝑔𝑅
 

Where  

 
𝑃

𝑊
=

𝑉2

𝑔𝑅
;  

𝑃

𝑊
= 0.21 𝑡𝑜 0.25 𝑓𝑜𝑟 𝑟𝑜𝑎𝑑𝑠 𝑎𝑛𝑑 0.125 𝑓𝑜𝑟 𝑟𝑎𝑖𝑙𝑤𝑎𝑦𝑠 

 

Resolving 

1. Forces parallel to the road surfaces 

 𝜇𝑁 + 𝑊𝑠𝑖𝑛𝛼 =
𝑊𝑣2

𝑔𝑅
𝑐𝑜𝑠𝛼 … … … … … … … … … … … (𝑖) 

2. Forces perpendicular to road surfaces 

 
𝑊𝑣2

𝑔𝑅
𝑠𝑖𝑛 𝛼 + 𝑊𝑐𝑜𝑠 𝛼 = 𝑁 … … … … … … … … … … … . . (𝑖𝑖) 

Putting the value of R from equation (ii) to equation (i) we get 

 

 𝜇 (
𝑊𝑣2

𝑔𝑅
𝑠𝑖𝑛𝛼 + 𝑊𝑐𝑜𝑠𝛼) +  𝑊𝑠𝑖𝑛𝛼 =

𝑊𝑣2

𝑔𝑅𝑐𝑜𝑠𝛼
 

 

Or  

 
𝑤𝑣2

𝑔𝑅
𝑠𝑖𝑛𝛼 + 𝑠𝑖𝑛𝛼 =

𝑣2

𝑔𝑅
− 𝑐𝑜𝑠𝛼 

Or 

 𝑠𝑖𝑛𝛼 (1 +
𝜇𝑣2

𝑔𝑅
) = 𝑐𝑜𝑠𝛼(

𝑣2

𝑔𝑅
− 𝜇) 

Or 



 
𝑠𝑖𝑛𝛼

𝑐𝑜𝑠𝛼
=

(
𝑣2

𝑔𝑅
−𝜇)

(1+ 
𝜇𝑣2

𝑔𝑅
) 

= 𝑡𝑎𝑛𝛼 

Since µ is a very small value i.e 0.15, 

 

 (1 +
𝜇𝑣2

𝑔𝑅
)  𝑡𝑒𝑛𝑑𝑠 𝑡𝑜 𝑧𝑒𝑟𝑜. 

Hence 𝑡𝑎𝑛𝛼 
𝑣2

𝑔𝑅
− 𝜇 

But 𝑡𝑎𝑛𝛼 = 𝑒 

So 𝑒 =
𝑣2

𝑔𝑅
− 𝜇 

 𝑒 + 𝜇 =
𝑣2

𝑔𝑅
= (

0.28𝑉

9.8𝑅
)2 =

𝑣2

127𝑅
 

 

Note: if 𝜇 = 0 and the forces acting on the vehicle are in equilibrium, then the situation occurs 

where the centrifugal force is entirely counteracted by the superelevation. 

 

Example 

Calculate the superelevation required for a road 7.5m wide in a curve of 240 m radius for a 

permissible speed of 80 km/h. Asumme the coefficient of internal friction as 0.15. also calculate 

the equilibrium superelevation for the condition when the pressure on inner and outer wheels 

will be equal. 

 

Solution 

 𝑒 + 𝜇 =
𝑣2

𝑔𝑅
= (

0.28𝑉

9.8𝑅
)2 =

𝑣2

127𝑅
 

 𝜇 = 0.15, 𝑣 = 80
𝑘𝑚

ℎ
, 𝑅 = 240𝑚 

Therefore 

 𝑒 + 0.15 =
802

127𝑥240
 

E = 0.21 - 0.15 = 0.06 

Therefore, superelevation = 0.06 x 7.5 x 100 

45 cm in terms of outer edge over inner 

 

For equilibrium superelevation when the pressure on the inner and outer wheels is to be equal, 

then 𝜇 = 0. 

 e = 
𝑣2

127𝑅
=  

802

127𝑥240
= 0.21  

superelevation = 0.21 x 7.5 x 100 = 157.5 cm 

in term of rise of outer edge over inner. 



Note: if the calculated e is negative, it means that e is not required; i.e 𝜇 >
𝑣2

𝑔𝑅
 

 

Advantages of providing superelevation 

1. It allows for design speed to be maintained on a curve as on a straight portion 

2. It helps in keeping the vehicles to their correct side. 

3. It lessens the danger of skidding at bends 

4. It keeps the pressure on wheels as equally distributed thereby resulting in less wear and 

tear of wheel tyres and springs. 

5. Helps to keep parking lanes generally level 

6. To keep the difference in slope between the roadway and any streets or driveways that 

intersect it within reasonable bounds. 

7. It helps to prevent slow moving vehicles from sliding to the inside of the curve. 

 

Superelevation should not be so excessive as to cause a stationary vehicle to slide down the 

cross slope, regardless of the nature and condition of the road surface. Superelevation rate 

shall not be less than the rate of crown slope, i.e camber or cross fall. 

Superelevation slopes on curves shall extend the full width of shoulders, except that the 

shoulder slope on the low side shall not be less than the minimum shoulder slope used on 

tangents. 

Example  

Calculate the allowable speed on a horizontal curve of radius 200 m. given the following data. 

1. Coefficient of lateral friction is 0.15 

2. Maximum superelevation of 1 in 15 is not to be exceeded 

 

 𝑒 + 𝜇 =
𝑣2

127𝑅
 

 𝑅 =
𝑣2

127(𝑒+𝜇)
; 

e = 
1

15
 

 𝑣2 = 127𝑅(𝑒 + 𝜇) 

 𝑣2 = 127𝑥 200(0.067 + 0.15) 

 𝑣2 = 5503.33 

 𝑣 = 74.18 𝑘𝑚/ℎ 

 

Pavement widening 

Pavement on curves sometimes are widened to make operating conditions on curves 

comparable to those on tangents. Pavements widening is needed on certain open highways 

because the vehicle or truck occupies greater width, since the rear wheels generally track inside 



front wheels in rounding curves and the drivers have some difficulty in steering their vehicles to 

hold to the centre of the lane. 

Widening should be attained gradually on the approaches to the curve to ensure a reasonablr 

smooth alignment on the edge of pavement and to fit the paths of vehicles entering or leaving 

the curve. The following are the principal points of concern in design, they apply to both ends 

of the highway curves. 

On simple curves, widening should be applied on the inside edge of pavement only. The final 

marked centerline and desirably any central longitudinal point should be placed midway 

between the edges of the widened pavements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


